Freezing-directed Stretching and Alignment of DNA Oligonucleotides
Dr. Biwu Liu
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorTianyi Wu
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorZhicheng Huang
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorYibo Liu
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Juewen Liu
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Biwu Liu
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorTianyi Wu
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorZhicheng Huang
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorYibo Liu
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Juewen Liu
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorGraphical Abstract
Cold as ice: Freezing DNA oligonucleotides stretches and aligns random coils, as confirmed using fluorescence resonance energy transfer, thiazole-orange staining, and surface-enhanced Raman spectroscopy. This will have interesting implications for biointerface science, biosensors, and DNA nanotechnology.
Abstract
Most single-stranded DNA oligonucleotides are random coils with a persistence length of below 1 nm. So far, no good methods are available to stretch oligonucleotides. Herein, it is shown that freezing can stretch DNA, as confirmed using fluorescence resonance energy transfer, thiazole-orange staining, and surface-enhanced Raman spectroscopy. Lateral inter-strand interactions are critical, and the stretched DNA oligonucleotides are aligned. This work also provides a set of methods for studying frozen oligonucleotides. Upon freezing, DNA oligonucleotides are readily adsorbed onto various nanomaterials, including gold nanoparticles, graphene oxide, iron oxide, and WS2 via the most thermodynamically stable conformation, leading to more stable conjugates.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201814352-sup-0001-misc_information.pdf753.5 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1V. A. Bloomfield, P. A. Killman, D. M. Crothers, I. Tinoco, J. E. Hearst, D. E. Wemmer, D. H. Turner, Nucleic Acids: Structure, Properties, and Functions, University Science Books, 2000.
- 2
- 2aN. C. Seeman, Nature 2003, 421, 427–431;
- 2bN. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2017, 3, 17068;
- 2cH. Pei, X. Zuo, D. Zhu, Q. Huang, C. Fan, Acc. Chem. Res. 2014, 47, 550–559.
- 3
- 3aS. B. Smith, Y. Cui, C. Bustamante, Science 1996, 271, 795–799;
- 3bM. C. Murphy, I. Rasnik, W. Cheng, T. M. Lohman, T. Ha, Biophys. J. 2004, 86, 2530–2537;
- 3cJ. B. Mills, E. Vacano, P. J. Hagerman, J. Mol. Biol. 1999, 285, 245–257.
- 4
- 4aN. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547–1562;
- 4bJ. Liu, Z. Cao, Y. Lu, Chem. Rev. 2009, 109, 1948–1998;
- 4cW. Zhou, R. Saran, J. Liu, Chem. Rev. 2017, 117, 8272–8325;
- 4dM. You, Y. Lyu, D. Han, L. Qiu, Q. Liu, T. Chen, C. Sam Wu, L. Peng, L. Zhang, G. Bao, W. Tan, Nat. Nanotechnol. 2017, 12, 453–459;
- 4eJ.-J. Xu, W.-W. Zhao, S. Song, C. Fan, H.-Y. Chen, Chem. Soc. Rev. 2014, 43, 1601–1611.
- 5
- 5aS. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, C. A. Mirkin, Nature 2008, 451, 553–556;
- 5bF. A. Aldaye, A. L. Palmer, H. F. Sleiman, Science 2008, 321, 1795–1799;
- 5cM. R. Jones, N. C. Seeman, C. A. Mirkin, Science 2015, 347, 1260901;
- 5dR. J. Macfarlane, M. R. Jones, A. J. Senesi, K. L. Young, B. Lee, J. Wu, C. A. Mirkin, Angew. Chem. Int. Ed. 2010, 49, 4589–4592; Angew. Chem. 2010, 122, 4693–4696;
- 5eH. Li, B. Zhang, X. Lu, X. Tan, F. Jia, Y. Xiao, Z. Cheng, Y. Li, D. O. Silva, H. S. Schrekker, K. Zhang, C. A. Mirkin, Proc. Natl. Acad. Sci. USA 2018, 115, 4340–4344;
- 5fN. Avakyan, A. A. Greschner, F. Aldaye, C. J. Serpell, V. Toader, A. Petitjean, H. F. Sleiman, Nat. Chem. 2016, 8, 368–376.
- 6
- 6aJ. Li, L. Mo, C.-H. Lu, T. Fu, H.-H. Yang, W. Tan, Chem. Soc. Rev. 2016, 45, 1410–1431;
- 6bD. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, C. A. Mirkin, Angew. Chem. Int. Ed. 2010, 49, 3280–3294; Angew. Chem. 2010, 122, 3352–3366;
- 6cX. Tan, X. Lu, F. Jia, X. Liu, Y. Sun, J. K. Logan, K. Zhang, J. Am. Chem. Soc. 2016, 138, 10834–10837.
- 7
- 7aH. Kimura-Suda, D. Y. Petrovykh, M. J. Tarlov, L. J. Whitman, J. Am. Chem. Soc. 2003, 125, 9014–9015;
- 7bT. M. Herne, M. J. Tarlov, J. Am. Chem. Soc. 1997, 119, 8916–8920;
- 7cJ. Liu, Phys. Chem. Chem. Phys. 2012, 14, 10485–10496.
- 8S. Deville, Freezing Colloids: Observations, Principles, Control, and Use: Applications in Materials Science Life Science Earth Science Food Science and Engineering, 1st ed., Springer International Publishing, Cham, 2017.
- 9H. Zhang, I. Hussain, M. Brust, M. F. Butler, S. P. Rannard, A. I. Cooper, Nat. Mater. 2005, 4, 787–793.
- 10B. Liu, J. Liu, J. Am. Chem. Soc. 2017, 139, 9471–9474.
- 11
- 11aJ. Lee, J.-H. Huh, K. Kim, S. Lee, Adv. Funct. Mater. 2018, 28, 1707309;
- 11bC. Yang, X. Yin, S.-Y. Huan, L. Chen, X.-X. Hu, M.-Y. Xiong, K. Chen, X.-B. Zhang, Anal. Chem. 2018, 90, 3118–3123.
- 12
- 12aR. O'Concubhair, J. R. Sodeau, Acc. Chem. Res. 2013, 46, 2716–2724;
- 12bR. E. Pincock, Acc. Chem. Res. 1969, 2, 97–103;
- 12cS. M. Agten, D. P. L. Suylen, T. M. Hackeng, Bioconjugate Chem. 2016, 27, 42–46;
- 12dN. Takenaka, H. Bandow, J. Phys. Chem. A 2007, 111, 8780–8786.
- 13J. Nygren, N. Svanvik, M. Kubista, Biopolymers 1998, 46, 39–51.
10.1002/(SICI)1097-0282(199807)46:1<39::AID-BIP4>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 14Z. Huang, B. Liu, J. Liu, Langmuir 2016, 32, 11986–11992.
- 15W. T. Godbey, K. K. Wu, A. G. Mikos, J. Controlled Release 1999, 60, 149–160.
- 16B. Liu, L. Ma, Z. Huang, H. Hu, P. Wu, J. Liu, Mater. Horiz. 2018, 5, 65–69.
- 17
- 17aB. Liu, S. Salgado, V. Maheshwari, J. Liu, Curr. Opin. Colloid Interface Sci. 2016, 26, 41–49;
- 17bH. Sun, J. Ren, X. Qu, Acc. Chem. Res. 2016, 49, 461–470;
- 17cY. Tao, Y. Lin, J. Ren, X. Qu, Biomaterials 2013, 34, 4810–4817.
- 18C. Lu, Y. Liu, Y. Ying, J. Liu, Langmuir 2017, 33, 630–637.
- 19R. M. Clegg, Methods Enzymol. 1992, 211, 353–388.
- 20B. Liu, P. Wu, Z. Huang, L. Ma, J. Liu, J. Am. Chem. Soc. 2018, 140, 4499–4502.
- 21B. Liu, J. Liu, Anal. Methods 2017, 9, 2633–2643.