A Promising Application of Optical Hexagonal TaN in Photocatalytic Reactions
Corresponding Author
Dr. Huimin Liu
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
The University of Sydney, School of Chemical and Biomolecular Engineering, Chemical Engineering Building J01, Sydney, New South Wales, 2006 Australia
These authors contributed equally to this work.
Search for more papers by this authorHui Song
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814 Japan
These authors contributed equally to this work.
Search for more papers by this authorDr. Wei Zhou
TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072 China
Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorDr. Xianguang Meng
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorCorresponding Author
Prof. Jinhua Ye
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814 Japan
TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Dr. Huimin Liu
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
The University of Sydney, School of Chemical and Biomolecular Engineering, Chemical Engineering Building J01, Sydney, New South Wales, 2006 Australia
These authors contributed equally to this work.
Search for more papers by this authorHui Song
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814 Japan
These authors contributed equally to this work.
Search for more papers by this authorDr. Wei Zhou
TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072 China
Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorDr. Xianguang Meng
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorCorresponding Author
Prof. Jinhua Ye
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814 Japan
TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072 China
Search for more papers by this authorGraphical Abstract
Abstract
Searching for highly active and efficient photocatalysts for photo-induced/photo-assisted reactions remains the most challenging task for solar energy utilization. In previous studies, the search for such materials has mainly focused on precious plasmonic metals (for example, Au, Ag, and Cu) and semiconductor oxides (for example, TiO2, ZnO, and WO3). Herein, we report the application of hexagonal tantalum mononitride (TaN) as an optical support in photocatalytic reactions, which could harness visible light to assist CO2 conversion and decompose organic pollutants. Theoretical studies indicated that the improved electron-hole separation in polar TaN under visible-light illumination was critical for its use in photocatalysis. This study could guide the use of TaN in various photocatalytic reactions and wider optical applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201810886-sup-0001-misc_information.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. J. Morris, G. J. Meyer, E. Fujita, Acc. Chem. Res. 2009, 42, 1983–1994;
- 1bY. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 2014, 114, 9987–10043;
- 1cG. Yin, W. Nishikaga, Y. Nosaka, N. Srinivasan, D. Atarashi, E. Sakai, M. Miyauchi, ACS Nano 2015, 9, 2111–2119;
- 1dS. Matsuoka, K. Yamamoto, T. Ogata, M. Kusaba, N. Nakashima, E. Fujita, S. Yanagida, J. Am. Chem. Soc. 1993, 115, 601–609.
- 2
- 2aD. Pakhare, J. Spivey, Chem. Soc. Rev. 2014, 43, 7813–7837;
- 2bW. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev. 2011, 40, 3703–3727;
- 2cT. V. Choudhary, V. R. Choudhary, Angew. Chem. Int. Ed. 2008, 47, 1828–1847; Angew. Chem. 2008, 120, 1852–1872.
- 3
- 3aA. Marimuthu, J. Zhang, S. Linic, Science 2013, 339, 1590–1593;
- 3bS. Sarina, H. Zhu, Q. Xiao, E. Jaatinen, J. Jia, Y. Huang, Z. Zheng, H. Wu, Angew. Chem. Int. Ed. 2014, 53, 2935–2940; Angew. Chem. 2014, 126, 2979–2984.
- 4M. J. Kale, T. Avanesian, H. Xin, J. Yan, P. Christopher, Nano Lett. 2014, 14, 5405–5412.
- 5
- 5aZ. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, J. Am. Chem. Soc. 2014, 136, 458–465;
- 5bA. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253–278.
- 6P. Christopher, H. Xin, S. Linic, Nat. Chem. 2011, 3, 467–472.
- 7
- 7aH. Liu, X. Meng, T. D. Dao, H. Zhang, P. Li, K. Chang, T. Wang, M. Li, T. Nagao, J. Ye, Angew. Chem. Int. Ed. 2015, 54, 11545–11549; Angew. Chem. 2015, 127, 11707–11711;
- 7bS. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911–921.
- 8
- 8aZ. Chen, J. Yan, Z. Kuang, T. Chen, D. Li, Int. J. Mod. Phys. B 2016, 30, 1650010;
- 8bA. Dashora, B. L. Ahuja, Radiat. Phys. Chem. 2010, 79, 1103–1110;
- 8cG. M. Matenoglou, L. E. Koutsokeras, C. E. Lekka, G. Abadias, S. Camelio, G. A. Evangelakis, C. Kosmidis, P. Patsalas, J. Appl. Phys. 2008, 104, 124907;
- 8dK. B. Lee, K. H. Lee, J. Korean Phys. Soc. 2009, 55, 966–970;
- 8eS. M. Aouadi, M. Debessai, J. Vac. Sci. Technol. A 2004, 22, 1975–1979;
- 8fM. Kumar, N. Umezawa, S. Ishii, T. Nagao, ACS Photonics 2016, 3, 43–50;
- 8gG. V. Naik, J. Kim, A. Boltasseva, Opt. Mater. Express 2011, 1, 1090–1099;
- 8hG. V. Naik, V. M. Shalaev, A. Boltasseva, Adv. Mater. 2013, 25, 3264–3294.
- 9
- 9aC. Langhammer, Z. Yuan, I. Zoric, B. Kasemo, Nano Lett. 2006, 6, 833–838;
- 9bM. Chen, B. Wu, J. Yang, N. Zheng, Adv. Mater. 2012, 24, 862–879.
- 10S. Haag, M. Burgard, B. Ernst, J. Catal. 2007, 252, 190–204.
- 11
- 11aL. Roux, J. Hanus, Sol. Energy Mater. 1982, 7, 299–312;
- 11bU. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, Nano Lett. 2013, 13, 6078–6083.
- 12X. Meng, T. Wang, L. Liu, S. Ouyang, P. Li, H. Hu, T. Kako, H. Iwai, A. Tanaka, J. Ye, Angew. Chem. Int. Ed. 2014, 53, 11478–11482; Angew. Chem. 2014, 126, 11662–11666.
- 13
- 13aP. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. H. Ploog, Nature 2000, 406, 865–868;
- 13bA. D. Andreev, E. P. O'Reilly, Phys. Rev. B 2000, 62, 15851;
- 13cN. Grandjean, B. Damilano, S. Dalmasso, M. Leroux, M. Laügt, J. Massies, J. Appl. Phys. 1999, 86, 3714–3720;
- 13dL. Li, P. A. Salvador, G. S. Rohrer, Nanoscale 2014, 6, 24–42.
- 14
- 14aK. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, J. Am. Chem. Soc. 2011, 133, 20863–20868;
- 14bS. Xie, Y. Wang, Q. Zhang, W. Deng, Y. Wang, ACS Catal. 2014, 4, 3644–3653.