Single-Site Molybdenum on Solid Support Materials for Catalytic Hydrogenation of N2-into-NH3
Correction(s) for this article
-
Corrigendum: Molybdenum on Solid Support Materials for Catalytic Hydrogenation of N2-into-NH3
- Luis Miguel Azofra,
- Natalia Morlanés,
- Albert Poater,
- Manoja K. Samantaray,
- Balamurugan Vidjayacoumar,
- Khalid Albahily,
- Luigi Cavallo,
- Jean-Marie Basset,
- Volume 58Issue 20Angewandte Chemie International Edition
- pages: 6476-6476
- First Published online: May 6, 2019
Corresponding Author
Dr. Luis Miguel Azofra
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorDr. Natalia Morlanés
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorDr. Albert Poater
Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, Campus de Montilivi, s/n, 17003 Girona, Catalonia, Spain
Search for more papers by this authorDr. Manoja K. Samantaray
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorDr. Balamurugan Vidjayacoumar
SABIC (Saudi Basic Industries Corporation), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorDr. Khalid Albahily
SABIC (Saudi Basic Industries Corporation), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Dr. Luigi Cavallo
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Dr. Jean-Marie Basset
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Dr. Luis Miguel Azofra
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorDr. Natalia Morlanés
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorDr. Albert Poater
Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, Campus de Montilivi, s/n, 17003 Girona, Catalonia, Spain
Search for more papers by this authorDr. Manoja K. Samantaray
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorDr. Balamurugan Vidjayacoumar
SABIC (Saudi Basic Industries Corporation), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorDr. Khalid Albahily
SABIC (Saudi Basic Industries Corporation), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Dr. Luigi Cavallo
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Dr. Jean-Marie Basset
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorGraphical Abstract
It'll be fixed in a Mo: N2-into-NH3 conversion is one of the most important processes in the chemical industry. A set of molybdenum on solid support materials catalyse N2 fixation under just atmospheric pressure and only 400 °C. They allow for an in-depth elucidation of the mechanistic events taking place which is supported by DFT analysis.
Abstract
Very stable in operando and low-loaded atomic molybdenum on solid-support materials have been prepared and tested to be catalytically active for N2-into-NH3 hydrogenation. Ammonia synthesis is reported at atmospheric pressure and 400 °C with NH3 rates of approximately 1.3×103 μmol h−1 gMo−1 using a well-defined Mo-hydride grafted on silica (SiO2-700). DFT modelling on the reaction mechanism suggests that N2 spontaneously binds on monopodal [(≡Si−O-)MoH3]. Based on calculations, the fourth hydrogenation step involving the release of the first NH3 molecule represents the rate-limiting step of the whole reaction. The inclusion of cobalt co-catalyst and an alkali caesium additive impregnated on a mesoporous SBA-15 support increases the formation of NH3 with rates of circa 3.5×103 μmol h−1 gMo−1 under similar operating conditions and maximum yield of 29×103 μmol h−1 gMo−1 when the pressure is increased to 30 atm.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201810409-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. Worrell, D. Phylipsen, D. Einstein, N. Martin, Energy Use and Energy Intensity of the U.S. Chemical Industry, 2010. Available, free of charge, at: https://www.energystar.gov.
- 2L. E. Apodaca, Mineral Commodity Summaries, 2014, U.S. Department of the Interior, U.S. Geological Survey. Available, free of charge, at: https://minerals.usgs.gov.
- 3R. D. Milton, R. Cai, S. Abdellaoui, D. Leech, A. L. De Lacey, M. Pita, S. D. Minteer, Angew. Chem. Int. Ed. 2017, 56, 2680; Angew. Chem. 2017, 129, 2724.
- 4J. G. J. Olivier, G. Janssens-Maenhout, M. Muntean, J. A. H. W. Peters, Trends in Global CO2 Emissions, 2015 Report, Background Studies, PBL Netherlands Environmental Assessment Agency, page 4. Available, free of charge, at: http://edgar.jrc.ec.europa.eu.
- 5F. Haber, R. Le Rossignol, Z. Elektrochem. Angew. Phys. Chem. 1913, 19, 53.
- 6T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens, R. Schlögl, Angew. Chem. Int. Ed. 2013, 52, 12723; Angew. Chem. 2013, 125, 12955.
- 7H. Liu, Chin. J. Catal. 2014, 35, 1619.
- 8
- 8aM. Appl, Ammonia. Principles and Industrial Practice, Wiley-VCH, Weinheim, 1999;
- 8bM. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, H. Hosono, Nat. Commun. 2015, 6, 6731.
- 9Current market prices for metals can be checked on-line at: http://www.infomine.com.
- 10J. D. A. Pelletier, J.-M. Basset, Acc. Chem. Res. 2016, 49, 664.
- 11
- 11aK. Asakura, M. Nishimura, Y. Iwasawa, J. Mol. Catal. 1989, 55, 159;
- 11bE. Mazoyer, N. Merle, A. de Mallmann, J.-M. Basset, E. Berrier, L. Delevoye, J. F. Paul, C. P. Nicholas, R. M. Gauvin, M. Taoufik, Chem. Commun. 2010, 46, 8944.
- 12
- 12aV. Vidal, A. Theolier, J. Thivolle-Cazat, J.-M. Basset, Science 1997, 276, 99;
- 12bJ.-M. Basset, C. Coperet, L. Lefort, B. M. Maunders, O. Maury, E. Le Roux, G. Saggio, S. Soignier, D. Soulivong, G. J. Sunley, M. Taoufik, J. Thivolle-Cazat, J. Am. Chem. Soc. 2005, 127, 8604;
- 12cF. Blanc, C. Coperet, J. Thivolle-Cazat, J.-M. Basset, Angew. Chem. Int. Ed. 2006, 45, 6201; Angew. Chem. 2006, 118, 6347;
- 12dY. Chen, E. Abou-Hamad, A. Hamieh, B. Hamzaoui, L. Emsley, J.-M. Basset, J. Am. Chem. Soc. 2015, 137, 588.
- 13P. Avenier, M. Taoufik, A. Lesage, X. Solans-Monfort, A. Baudouin, A. de Mallmann, L. Veyre, J.-M. Basset, O. Eisenstein, L. Emsley, E. A. Quadrelli, Science 2007, 317, 1056.
- 14J. Li, S. Li, Angew. Chem. Int. Ed. 2008, 47, 8040; Angew. Chem. 2008, 120, 8160.
- 15X. Solans-Monfort, C. Chow, E. Goure, Y. Kaya, J.-M. Basset, M. Taoufik, E. A. Quadrelli, O. Eisenstein, Inorg. Chem. 2012, 51, 7237.
- 16Molybdenum compounds have demonstrated to be promising catalysts for homogeneous N2 fixation. Some works to be highlighted are:
- 16aD. V. Yandulov, R. Schrock, Science 2003, 301, 76;
- 16bW. W. Weare, X. Dai, M. J. Byrnes, J. M. Chin, R. R. Schrock, P. Müller, Proc. Natl. Acad. Sci. USA 2006, 103, 17099;
- 16cK. Arashiba, Y. Miyake, Y. Nishibayashi, Nat. Chem. 2011, 3, 120.
- 17R. P. Saint-Arroman, M. Chabanas, A. Baudouin, C. Copéret, J.-M. Basset, A. Lesage, L. Emsley, J. Am. Chem. Soc. 2001, 123, 3820.
- 18N. Liu, L. Nie, N. Xue, H. Dong, L. Peng, X. Guo, W. Ding, ChemCatChem 2010, 2, 167.
- 19Y. Gong, J. Wu, M. Kitano, J. Wang, T.-N. Ye, J. Li, Y. Kobayashi, K. Kishida, H. Abe, Y. Niwa, H. Yang, T. Tada, H. Hosono, Nat. Catal. 2018, 1, 178.
- 20
- 20aF. Rataboul, A. Baudouin, C. Thieuleux, L. Veyre, C. Copéret, J. Thivolle-Cazat, J.-M. Basset, A. Lesage, L. Emsley, J. Am. Chem. Soc. 2014, 136, 12541;
- 20bN. Maity, S. Barman, E. Callens, M. K. Samantaray, E. Abou-Hamad, Y. Minenkov, V. D′Elia, A. S. Hoffman, C. M. Widdifield, L. Cavallo, B. C. Gates, J.-M. Basset, Chem. Sci. 2016, 7, 1558.
- 21L. M. Azofra, C. Sun, L. Cavallo, D. R. MacFarlane, Chem. Eur. J. 2017, 23, 8275.
- 22
- 22aJ. S. Anderson, J. Rittle, J. C. Peters, Nature 2013, 501, 84;
- 22bL. M. Azofra, N. Li, D. R. MacFarlane, C. Sun, Energy Environ. Sci. 2016, 9, 2545;
- 22cB. H. R. Suryanto, C. S. M. Kang, D. Wang, C. Xiao, F. Zhou, L. M. Azofra, L. Cavallo, X. Zhang, D. R. MacFarlane, ACS Energy Lett. 2018, 3, 1219.
- 23H.-P. Jia, E. A. Quadrelli, Chem. Soc. Rev. 2014, 43, 547.