All-Inorganic Ionic Porous Material Based on Giant Spherical Polyoxometalates Containing Core-Shell K6@K36-Water Cage
Zhong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorLi-Dan Lin
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorHao Yu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorDr. Xin-Xiong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shou-Tian Zheng
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorZhong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorLi-Dan Lin
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorHao Yu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorDr. Xin-Xiong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shou-Tian Zheng
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorGraphical Abstract
Giant ionic cluster: The utilization of highly negative polyoxometalates for the clustering of alkali metal cations has allowed the synthesis of a rare all-inorganic ionic porous material built from novel giant ionic clusters {K42Ge8W72O272(H2O)60} (K42W72), which exhibits high proton conductivity. The K42W72 not only is among the largest ionic clusters but also contains unprecedented core–shell K6@K36-H2O cage.
Abstract
This work demonstrates that the use of high-negative and high-symmetry lacunary polyoxometalates (POMs) for the clustering of alkali metal ions is a feasible strategy not only for the formation of rare high-nuclearity alkali-metal clusters but also for the construction of new-type all-inorganic ionic porous materials. By the strategy, an unprecedented high-nuclearity K-H2O cluster {K42(H2O)60} with core–shell K6@K36 configuration is stabilized by 8 C3v-symmetry trivacant POMs [GeW9O34]10−, forming a novel giant ionic alkali-metal-POM composite cluster {K42Ge8W72O272(H2O)60} with more than 100 metal centers. The incorporated 42-nuclearity K-H2O cluster {K42(H2O)60} exhibits the highest-nuclearity alkali-metal-water cluster known to date in POM chemistry. Further, the giant {K42Ge8W72O272(H2O)60} clusters can be linked by another kind of alkali metal ions Na+ to generate a fascinating three-dimensional all-inorganic ionic porous framework with high chemical stability, proton conductivity, and water vapor adsorption.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201810074-sup-0001-misc_information.pdf3.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Schoedel, M. Li, D. Li, M. O'Keeffe, O. M. Yaghi, Chem. Rev. 2016, 116, 12466–12535;
- 1bX. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H. C. Zhou, Chem. Soc. Rev. 2017, 46, 3386–3401;
- 1cG. Maurin, C. Serre, A. Cooper, G. Férey, Chem. Soc. Rev. 2017, 46, 3104–3107;
- 1dT. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha, J. T. Hupp, Acc. Chem. Res. 2017, 50, 805–813;
- 1eQ. G. Zhai, X. Bu, X. Zhao, D. S. Li, P. Feng, Acc. Chem. Res. 2017, 50, 407–417.
- 2
- 2aA. Schoedel, L. Wojtas, S. P. Kelley, R. D. Rogers, M. Eddaoudi, M. J. Zaworotko, Angew. Chem. Int. Ed. 2011, 50, 11421–11424; Angew. Chem. 2011, 123, 11623–11626;
- 2bD. Tian, Q. Chen, Y. Li, Y. H. Zhang, Z. Chang, X. H. Bu, Angew. Chem. Int. Ed. 2014, 53, 837–841; Angew. Chem. 2014, 126, 856–860;
- 2cA. Schoedela, M. J. Zaworotko, Chem. Sci. 2014, 5, 1269–1282.
- 3
- 3aV. G. Ponomareva, K. A. Kovalenko, A. P. Chupakhin, D. N. Dybtsev, E. S. Shutova, V. P. Fedin, J. Am. Chem. Soc. 2012, 134, 15640–15643;
- 3bN. T. T. Nguyen, H. Furukawa, F. Gándara, C. A. Trickett, H. M. Jeong, K. E. Cordova, O. M. Yaghi, J. Am. Chem. Soc. 2015, 137, 15394–15397;
- 3cM. R. Karim, K. Hatakeyama, M. Koinuma, S. Hayami, J. Mater. Chem. A 2017, 5, 7243–7256.
- 4
- 4aX. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010–6022;
- 4bP. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053–3063;
- 4cJ. L. Segura, M. J. Mancheño, F. Zamora, Chem. Soc. Rev. 2016, 45, 5635–5671.
- 5
- 5aF. Beuerle, B. Gole, Angew. Chem. Int. Ed. 2018, 57, 4850–4878; Angew. Chem. 2018, 130, 4942–4972;
- 5bB. Gole, V. Stepanenko, S. Rager, M. Grgne, D. D. Medina, T. Bein, F. Würthner, F. Beuerle, Angew. Chem. Int. Ed. 2018, 57, 846–850; Angew. Chem. 2018, 130, 856–860;
- 5cQ. Xu, S. Tao, Q. Jiang, D. Jiang, J. Am. Chem. Soc. 2018, 140, 7429–7432.
- 6
- 6aY. Li, J, Yu, Chem. Rev. 2014, 114, 7268–7316;
- 6bX. Meng, F. S. Xiao, Chem. Rev. 2014, 114, 1521–1543;
- 6cM. Dusselier, M. E. Davis, Chem. Rev. 2018, 118, 5265–5329.
- 7
- 7aP. Eliášová, M. Opanasenko, P. S. Wheatley, M. Shamzhy, M. Mazur, P. Nachtigall, W. J. Roth, R. E. Morris, J. Čejka, Chem. Soc. Rev. 2015, 44, 7177–7206;
- 7bJ. Dong, P. Cui, P. F. Shi, P. Cheng, B. Zhao, J. Am. Chem. Soc. 2015, 137, 15988–15991;
- 7cB. Yang, J. G. Jiang, H. Xu, H. Wu, M. He, P. Wu, Angew. Chem. Int. Ed. 2018, 57, 9515–9519; Angew. Chem. 2018, 130, 9659–9663.
- 8
- 8aS. Horike, D. Umeyama, M. Inukai, T. Itakura, S. Kitagawa, J. Am. Chem. Soc. 2012, 134, 7612–7615;
- 8bJ. K. Sun, M. Antonietti, J. Yuan, Chem. Soc. Rev. 2016, 45, 6627–6656.
- 9
- 9aC. Jiang, A. Lesbani, R. Kawamoto, S. Uchida, N. Mizuno, J. Am. Chem. Soc. 2006, 128, 14240–14241;
- 9bJ. H. Son, H. Choi, Y. U. Kwon, J. Am. Chem. Soc. 2000, 122, 7432–7433;
- 9cS. Uchida, R. Eguchi, N. Mizuno, Angew. Chem. Int. Ed. 2010, 49, 9930–9934; Angew. Chem. 2010, 122, 10126–10130;
- 9dK. Suzuki, Y. Kikukawa, S. Uchida, H. Tokoro, K. Imoto, S. Ohkoshi, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51, 1597–1601; Angew. Chem. 2012, 124, 1629–1633.
- 10
- 10aB. S. Bassil, M. Ibrahim, R. Al-Oweini, M. Asano, Z. Wang, J. van Tol, N. S. Dalal, K. Y. Choi, R. N. Biboum, B. Keita, L. Nadjo, U. Kortz, Angew. Chem. Int. Ed. 2011, 50, 5961–5964; Angew. Chem. 2011, 123, 6083–6087;
- 10bB. Godin, Y. G. Chen, J. Vaissermann, L. Ruhlmann, M. Verdaguer, P. Gouzerh, Angew. Chem. Int. Ed. 2005, 44, 3072–3075; Angew. Chem. 2005, 117, 3132–3135;
- 10cM. Ibrahim, Y. Lan, B. S. Bassil, Y. Xiang, A. Suchopar, A. K. Powell, U. Kortz, Angew. Chem. Int. Ed. 2011, 50, 4708–4711; Angew. Chem. 2011, 123, 4805–4808;
- 10dX. B. Han, Y. G. Li, Z. M. Zhang, H. Q. Tan, Y. Lu, E. B. Wang, J. Am. Chem. Soc. 2015, 137, 5486–5493;
- 10eS. S. Mal, U. Kortz, Angew. Chem. Int. Ed. 2005, 44, 3777–3780; Angew. Chem. 2005, 117, 3843–3846;
- 10fL. Huang, S. S. Wang, J. W. Zhao, L. Cheng, G. Y. Yang, J. Am. Chem. Soc. 2014, 136, 7637–7642;
- 10gC. Zhan, J. M. Cameron, J. Gao, J. W. Purcell, D. L. Long, L. Cronin, Angew. Chem. Int. Ed. 2014, 53, 10362–10366; Angew. Chem. 2014, 126, 10530–10534;
- 10hZ. Li, X. X. Li, T. Yang, Z. W. Cai, S. T. Zheng, Angew. Chem. Int. Ed. 2017, 56, 2664–2669; Angew. Chem. 2017, 129, 2708–2713;
- 10iL. Jin, X. X. Li, Y. J. Qi, P. P. Niu, S. T. Zheng, Angew. Chem. Int. Ed. 2016, 55, 13793–13797; Angew. Chem. 2016, 128, 13997–14001.
- 11
- 11aH. N. Miras, J. Yan, D. L. Long, L. Cronin, Chem. Soc. Rev. 2012, 41, 7403–7430;
- 11bO. Oms, A. Dolbecq, P. Mialane, Chem. Soc. Rev. 2012, 41, 7497–7536;
- 11cL. Jin, Z. K. Zhu, Y. L. Wu, Y. J. Qi, X. X. Li, S. T. Zheng, Angew. Chem. Int. Ed. 2017, 56, 16288–16292; Angew. Chem. 2017, 129, 16506–16510;
- 11dY. L. Wu, X. X. Li, Y. J. Qi, H. Yu, L. Jin, S. T. Zheng, Angew. Chem. Int. Ed. 2018, 57, 8572–8576; Angew. Chem. 2018, 130, 8708–8712.
- 12
- 12aS. Gupta, M. V. Kirillova, M. F. C. G. da Silva, A. J. L. Pombeiro, A. M. Kirillov, Inorg. Chem. 2013, 52, 8601–8611;
- 12bA. Kaur, G. Hundal, M. S. Hundal, Cryst. Growth Des. 2013, 13, 3996–4001;
- 12cL. An, J. Zhou, H. P. Xiao, X. Liu, H. Zou, C. Y. Pan, M. Liu, J. Lia, CrystEngComm 2014, 16, 4236–4244;
- 12dD. E. J. Packiam, K. Vidyasagar, Dalton Trans. 2017, 46, 16102–16112;
- 12eS. Han, B. Zhang, T. Tong, Z. Yang, S. Pan, New J. Chem. 2018, 42, 10879–10884.
- 13PLATON VOIDS probe diameter 1.2 Å. A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13.
- 14W. Luo, J. Hu, H. Diao, B. Schwarz, C. Streb, Y. F. Song, Angew. Chem. Int. Ed. 2017, 56, 4941–4944; Angew. Chem. 2017, 129, 5023–5026.
- 15
- 15aS. Noro, R. Tsunashima, Y. Kamiya, K. Uemura, H. Kita, L. Cronin, T. Akutagawa, T. Nakamura, Angew. Chem. Int. Ed. 2009, 48, 8703–8706; Angew. Chem. 2009, 121, 8859–8862;
- 15bY. Ogasawara, S. Uchida, T. Maruichi, R. Ishikawa, N. Shibata, Y. Ikuhara, N. Mizuno, Chem. Mater. 2013, 25, 905–911;
- 15cR. Kawahara, S. Uchida, N. Mizuno, Chem. Mater. 2015, 27, 2092–2099.
- 16
- 16aK. D. Kreuer, Chem. Mater. 1996, 8, 610–641;
- 16bG. K. H. Shimizu, J. M. Taylor, S. Kim, Science 2013, 341, 354–355;
- 16cJ. C. Liu, Q. Han, L. J. Chen, J. W. Zhao, C. Streb, Y. F. Song, Angew. Chem. Int. Ed. 2018, 57, 8416–8420; Angew. Chem. 2018, 130, 8552–8556.
- 17N. Haraguchi, Y. Okaue, T. Isobe, Y. Matsuda, Inorg. Chem. 1994, 33, 1015–1020.