Terraced and Smooth Gradient Polymer Brushes via a Polymer Single-Crystal Assisted Grafting-To Method
Shan Mei
Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104 USA
Search for more papers by this authorCorresponding Author
Prof. Christopher Y. Li
Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104 USA
Search for more papers by this authorShan Mei
Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104 USA
Search for more papers by this authorCorresponding Author
Prof. Christopher Y. Li
Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104 USA
Search for more papers by this authorGraphical Abstract
Abstract
Gradient polymer brushes provide a spatial gradient change in molecular characteristics of the brush, and such a change can be utilized to study structure–property relationships in a combinatorial fashion. In this study, a bottom-up method was used to synthesize gradient polymer brushes with a predesigned and precisely controlled grafting density gradient and brush pattern. A polymer single-crystal assisted grafting-to (PSCAGT) method was employed where end-functionalized polymers were grown into two-dimensional polymer single crystals. The latter were chemically coupled to a solid substrate to form well-defined polymer brushes. To tune the grafting density, end-dissimilar polymers were used to co-crystallize into one single crystal. Programmed single-crystal growth was introduced to synthesize brushes with two different gradient architectures, that is, terraced and smooth gradient with pyramid patterns. This work demonstrates that the PSCAGT method offers a unique means to tune polymer brush nanostructure.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201809915-sup-0001-misc_information.pdf313.7 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. T. Milner, Science 1991, 251, 905–914;
- 1bB. Zhao, W. J. Brittain, Prog. Polym. Sci. 2000, 25, 677–710;
- 1cW.-L. Chen, R. Cordero, H. Tran, C. K. Ober, Macromolecules 2017, 50, 4089–4113;
- 1dR. Barbey, L. Lavanant, D. Paripovic, N. Schuwer, C. Sugnaux, S. Tugulu, H. A. Klok, Chem. Rev. 2009, 109, 5437–5527;
- 1eM. A. Stuart, W. T. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 2010, 9, 101–113;
- 1fE. P. K. Currie, W. Norde, M. A. Cohen Stuart, Adv. Colloid Interface Sci. 2003, 100–102, 205–265;
- 1gJ. Zhang, Y. Han, Chem. Soc. Rev. 2010, 39, 676–693.
- 2
- 2aJ. Genzer, Annu. Rev. Mater. Res. 2012, 42, 435–468;
- 2bQ. Yu, L. K. Ista, R. Gu, S. Zauscher, G. P. Lopez, Nanoscale 2016, 8, 680–700.
- 3
- 3aB. Li, B. Yu, Q. Ye, F. Zhou, Acc. Chem. Res. 2015, 48, 229–237;
- 3bX. Lin, Q. He, J. Li, Chem. Soc. Rev. 2012, 41, 3584–3593;
- 3cM. S. Kim, G. Khang, H. B. Lee, Prog. Polym. Sci. 2008, 33, 138–164;
- 3dI. Luzinov, S. Minko, V. V. Tsukruk, Soft Matter 2008, 4, 714–725.
- 4
- 4aT. Wu, K. Efimenko, P. Vlček, V. Šubr, J. Genzer, Macromolecules 2003, 36, 2448–2453;
- 4bT. Wu, P. Gong, I. Szleifer, P. Vlček, V. Šubr, J. Genzer, Macromolecules 2007, 40, 8756–8764;
- 4cT. Wu, K. Efimenko, J. Genzer, J. Am. Chem. Soc. 2002, 124, 9394–9395.
- 5
- 5aM. R. Tomlinson, J. Genzer, Macromolecules 2003, 36, 3449–3451;
- 5bR. R. Bhat, M. R. Tomlinson, J. Genzer, J. Polym. Sci. Part B 2005, 43, 3384–3394;
- 5cM. R. Tomlinson, J. Genzer, Chem. Commun. 2003, 1350–1351.
- 6X. Wang, H. Tu, P. V. Braun, P. W. Bohn, Langmuir 2006, 22, 817–823.
- 7
- 7aJ. E. Poelma, B. P. Fors, G. F. Meyers, J. W. Kramer, C. J. Hawker, Angew. Chem. Int. Ed. 2013, 52, 6844–6848; Angew. Chem. 2013, 125, 6982–6986;
- 7bN. Shida, Y. Koizumi, H. Nishiyama, I. Tomita, S. Inagi, Angew. Chem. Int. Ed. 2015, 54, 3922–3926; Angew. Chem. 2015, 127, 3994–3998.
- 8
- 8aQ. He, A. Kueller, S. Schilp, F. Leisten, H. A. Kolb, M. Grunze, J. Li, Small 2007, 3, 1860–1865;
- 8bT. Chen, R. Jordan, S. Zauscher, Small 2011, 7, 2148–2152;
- 8cW. Eck, V. Stadler, W. Geyer, M. Zharnikov, A. Gölzhäuser, M. Grunze, Adv. Mater. 2000, 12, 805–808;
- 8dS. Schilp, N. Ballav, M. Zharnikov, Angew. Chem. Int. Ed. 2008, 47, 6786–6789; Angew. Chem. 2008, 120, 6891–6894;
- 8eX. Zhou, X. Wang, Y. Shen, Z. Xie, Z. Zheng, Angew. Chem. Int. Ed. 2011, 50, 6506–6510; Angew. Chem. 2011, 123, 6636–6640;
- 8fN. Ballav, S. Schilp, M. Zharnikov, Angew. Chem. Int. Ed. 2008, 47, 1421–1424; Angew. Chem. 2008, 120, 1443–1446;
- 8gM. Steenackers, A. Kuller, S. Stoycheva, M. Grunze, R. Jordan, Langmuir 2009, 25, 2225–2231.
- 9
- 9aB. Wunderlich, Macromolecular Physics, Academic Press, New York, 1976;
- 9bS. Z. D. Cheng, Phase transitions in polymers : the role of metastable states, 1st ed., Elsevier, Amsterdam, Boston, 2008;
- 9cB. Dong, T. Zhou, H. Zhang, C. Y. Li, ACS Nano 2013, 7, 5192–5198;
- 9dH. Qi, T. Zhou, S. Mei, X. Chen, C. Y. Li, ACS Macro Lett. 2016, 5, 651–655;
- 9eB. Li, C. Y. Li, J. Am. Chem. Soc. 2007, 129, 12–13;
- 9fB. Dong, W. Wang, D. L. Miller, C. Y. Li, J. Mater. Chem. 2012, 22, 15526–15529;
- 9gT. Zhou, B. Wang, B. Dong, C. Y. Li, Macromolecules 2012, 45, 8780–8789;
- 9hB. Wang, B. Li, B. Zhao, C. Y. Li, J. Am. Chem. Soc. 2008, 130, 11594–11595;
- 9iB. Li, B. Wang, R. C. M. Ferrier, C. Y. Li, Macromolecules 2009, 42, 9394–9399;
- 9jC. Y. Li, J. Polym. Sci. Part B 2009, 47, 2436–2440;
- 9kB. Wang, B. Li, B. Dong, B. Zhao, C. Y. Li, Macromolecules 2010, 43, 9234–9238;
- 9lB. Dong, D. L. Miller, C. Y. Li, J. Phys. Chem. Lett. 2012, 3, 1346–1350;
- 9mE. D. Laird, W. Wang, S. Cheng, B. Li, V. Presser, B. Dyatkin, Y. Gogotsi, C. Y. Li, ACS Nano 2012, 6, 1204–1213.
- 10
- 10aZ. M. Hudson, C. E. Boott, M. E. Robinson, P. A. Rupar, M. A. Winnik, I. Manners, Nat. Chem. 2014, 6, 893;
- 10bM. C. Arno, M. Inam, Z. Coe, G. Cambridge, L. J. Macdougall, R. Keogh, A. P. Dove, R. K. O'Reilly, J. Am. Chem. Soc. 2017, 139, 16980–16985;
- 10cJ. Xu, H. Zhou, Q. Yu, I. Manners, M. A. Winnik, J. Am. Chem. Soc. 2018, 140, 2619–2628;
- 10dG. Guerin, P. A. Rupar, I. Manners, M. A. Winnik, Nat. Commun. 2018, 9, 1158;
- 10eM. Inam, G. Cambridge, A. Pitto-Barry, Z. P. L. Laker, N. R. Wilson, R. T. Mathers, A. P. Dove, R. K. O'Reilly, Chem. Sci. 2017, 8, 4223–4230.
- 11T. Zhou, H. Qi, L. Han, D. Barbash, C. Y. Li, Nat. Commun. 2016, 7, 11119.
- 12S. Mei, H. Qi, T. Zhou, C. Y. Li, Angew. Chem. Int. Ed. 2017, 56, 13645–13649; Angew. Chem. 2017, 129, 13833–13837.