Direct Access to Aryl Bis(trifluoromethyl)carbinols from Aryl Bromides or Fluorosulfates: Palladium-Catalyzed Carbonylation
Katrine Domino
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
These authors contributed equally to this work.
Search for more papers by this authorCedrick Veryser
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Molecular Design and Synthesis, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
These authors contributed equally to this work.
Search for more papers by this authorBenjamin A. Wahlqvist
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorCecilie Gaardbo
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorDr. Karoline T. Neumann
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorProf.Dr. Kim Daasbjerg
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorProf. Dr. Wim M. De Borggraeve
Molecular Design and Synthesis, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
Search for more papers by this authorCorresponding Author
Prof. Dr. Troels Skrydstrup
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorKatrine Domino
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
These authors contributed equally to this work.
Search for more papers by this authorCedrick Veryser
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Molecular Design and Synthesis, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
These authors contributed equally to this work.
Search for more papers by this authorBenjamin A. Wahlqvist
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorCecilie Gaardbo
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorDr. Karoline T. Neumann
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorProf.Dr. Kim Daasbjerg
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorProf. Dr. Wim M. De Borggraeve
Molecular Design and Synthesis, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
Search for more papers by this authorCorresponding Author
Prof. Dr. Troels Skrydstrup
Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorGraphical Abstract
The more the merrier: Described is the direct synthesis of aryl bis(trifluoromethyl)carbinols from aryl bromides and fluorosulfates with a stoichiometric amount of carbon monoxide and two equivalents of trifluoromethyltrimethylsilane. The method exhibits good yields, broad scope, and good functional-group tolerance, and is suitable for carbon-isotope labeling.
Abstract
A palladium-catalyzed carbonylative approach for the direct conversion of (hetero)aryl bromides into their α,α-bis(trifluoromethyl)carbinols is described, and it employs only stoichiometric amounts of carbon monoxide and trifluoromethyltrimethylsilane. In addition, aryl fluorosulfates proved highly compatible with these reaction conditions. The method is tolerant of a diverse set of functional groups, and it is adaptable to late-stage carbon-isotope labeling.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201802647-sup-0001-misc_information.pdf18.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected reviews on fluorine-containing pharmaceuticals, see:
- 1aY. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña, V. A. Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422;
- 1bJ. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432;
- 1cS. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320;
- 1dK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881.
- 2For selected biomedical applications of α,α-bis(trifluoromethyl)carbinol-containing molecules, see:
- 2aL. Li, J. Liu, L. Zhu, S. Cutler, H. Hasegawa, B. Shan, J. C. Medina, Bioorg. Med. Chem. Lett. 2006, 16, 1638;
- 2bN. Kumar, L. A. Solt, J. J. Conkright, Y. Wang, M. A. Istrate, S. A. Busby, R. D. Garcia-Ordonez, T. P. Burris, P. R. Griffin, Mol. Pharmacol. 2010, 77, 228;
- 2cY. Wang, N. Kumar, P. Nuhant, M. D. Cameron, M. A. Istrate, W. R. Roush, P. R. Griffin, T. P. Burris, ACS Chem. Biol. 2010, 5, 1029;
- 2dK. Matsuno, Y. Ueda, M. Fukuda, K. Onoda, M. Waki, M. Ikeda, N. Kato, H. Miyachi, Bioorg. Med. Chem. Lett. 2014, 24, 4276;
- 2eE. L. Grimm, C. Brideau, N. Chauret, C.-C. Chan, D. Delorme, Y. Ducharme, D. Ethier, J.-P. Falgueyret, R. W. Friesen, J. Guay, P. Hamel, D. Riendeau, C. Soucy-Breau, P. Tagari, Y. Girard, Bioorg. Med. Chem. Lett. 2006, 16, 2528;
- 2fM. P. Bourbeau, K. S. Ashton, J. Yan, D. J. St. Jean, Jr., J. Org. Chem. 2014, 79, 3684.
- 3
- 3aY. Li, G. Xia, Q. Guo, L. Wu, S. Chen, Z. Yang, W. Wang, Z.-Y. Zhang, X. Zhou, Z.-X. Jiang, MedChemComm 2016, 7, 1672;
- 3bW. Yu, Y. Yang, S. Bo, Y. Li, S. Chen, Z. Yang, X. Zheng, Z.-X. Jiang, X. Zhou, J. Org. Chem. 2015, 80, 4443;
- 3cQ. Peng, Y. Yuan, H. Zhang, S. Bo, Y. Li, S. Chen, Z. Yang, X. Zhou, Z.-X. Jiang, Org. Biomol. Chem. 2017, 15, 6441.
- 4
- 4aP. E. Cassidy, T. M. Aminabhavi, V. S. Reddy, J. W. Fitch, Eur. Polym. J. 1995, 31, 353;
- 4bJ. W. Fitch, E. Bucio, L. Martinez, J. Macossay, S. R. Venumbaka, N. Dean, D. Stoakley, P. E. Cassidy, Polymer 2003, 44, 6431;
- 4c“Highly fluorinated diglycidyl ethers”: J. R. Griffith, J. G. O'rear, US3879430, 1975; M. Miyasaka, N. Koike, Y. Fujiwara, H. Kudo, T. Nishikubo, Polym. J. 2011, 43, 325.
- 5
- 5aS. Morikawa, K. Michigami, H. Amii, Org. Lett. 2010, 12, 2520;
- 5bM. E. O'Reilly, I. Ghiviriga, K. A. Abboud, A. S. Veige, J. Am. Chem. Soc. 2012, 134, 11185;
- 5cL. Ratjen, M. van Gemmeren, F. Pesciaioli, B. List, Angew. Chem. Int. Ed. 2014, 53, 8765; Angew. Chem. 2014, 126, 8910.
- 6
- 6aL. Kong, J. Wang, X. Fu, Y. Zhong, F. Meng, T. Luo, J. Liu, Carbon 2010, 48, 1262;
- 6bL. Kong, J. Wang, T. Luo, F. Meng, X. Chen, M. Li, J. Liu, Analyst 2010, 135, 368.
- 7
- 7aH. Lenormand, V. Corcé, G. Sorin, C. Chhun, L.-M. Chamoreau, L. Krim, E.-L. Zins, J.-P. Goddard, L. Fensterbank, J. Org. Chem. 2015, 80, 3280;
- 7bE. F. Perozzi, J. C. Martin, J. Am. Chem. Soc. 1979, 101, 1591.
- 8
- 8aB. S. Farah, E. E. Gilbert, J. P. Sibilia, J. Org. Chem. 1965, 30, 998;
- 8bJ. Sepio, R. L. Soulen, J. Fluorine Chem. 1984, 24, 61;
- 8cT. J. Barbarich, B. G. Nolan, S. Tsujioka, S. M. Miller, O. P. Anderson, S. H. Strauss, J. Fluorine Chem. 2001, 112, 335.
- 9
- 9aL. A. Babadzhanova, N. V. Kirij, Y. L. Yagupolskii, W. Tyrra, D. Naumann, Tetrahedron 2005, 61, 1813;
- 9bY. Chang, C. Cai, J. Fluorine Chem. 2005, 126, 937;
- 9cI. A. Sanhueza, K. J. Bonney, M. C. Nielsen, F. Schoenebeck, J. Org. Chem. 2013, 78, 7749;
- 9dY. Zhang, M. Fujiu, H. Serizawa, K. Mikami, J. Fluorine Chem. 2013, 156, 367;
- 9eJ. B. Geri, M. M. Wade Wolfe, N. K. Szymczak, Angew. Chem. Int. Ed. 2018, 57, 1381; Angew. Chem. 2018, 130, 1395.
- 10The time-weighted average exposure limit for hexafluoroacetone has been set to 0.1 ppm by the US National Institute for Occupational Safety and Health. For CO, the time-weighted average exposure limit is 35 ppm.
- 11
- 11aP. Hermange, A. T. Lindhardt, R. H. Taaning, K. Bjerglund, D. Lupp, T. Skrydstrup, J. Am. Chem. Soc. 2011, 133, 6061;
- 11bA. T. Lindhardt, R. Simonssen, R. H. Taaning, T. M. Gøgsig, G. N. Nilsson, G. Stenhagen, C. S. Elmore, T. Skrydstrup, J. Labelled Compd. Radiopharm. 2012, 55, 411.
- 12
- 12aS. D. Friis, A. T. Lindhardt, T. Skrydstrup, Acc. Chem. Res. 2016, 49, 594;
- 12bSee Supporting Information.
- 13
- 13aT. Ueda, H. Konishi, K. Manabe, Org. Lett. 2013, 15, 5370;
- 13bJ. S. Quesnel, B. A. Arndtsen, J. Am. Chem. Soc. 2013, 135, 16841;
- 13cJ. Tjutrins, B. A. Arndtsen, J. Am. Chem. Soc. 2015, 137, 12050;
- 13dJ. S. Quesnel, L. V. Kayser, A. Fabrikant, B. A. Arndtsen, Chem. Eur. J. 2015, 21, 9550.
- 14
- 14aN. C. Bruno, N. Nilijanskul, S. L. Buchwald, J. Org. Chem. 2014, 79, 4161;
- 14bS. D. Friis, T. Skrydstrup, S. L. Buchwald, Org. Lett. 2014, 16, 4296.
- 15
- 15aV. V. Grushin, W. J. Marshall, J. Am. Chem. Soc. 2006, 128, 12644;
- 15bE. J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang, D. A. Watson, S. L. Buchwald, Science 2010, 328, 1679.
- 16We have earlier observed that a balloon of CO is not sufficient for certain carbonylative cross-couplings because of a lower CO partial pressure compared to using a two-chamber system. For an example, see: T. L. Andersen, A. S. Donslund, K. T. Neumann, T. Skrydstrup, Angew. Chem. Int. Ed. 2018, 57, 800; Angew. Chem. 2018, 130, 808.
- 17As aryl bis(trifluoromethyl)carbinols can be quite acidic (pKa for 2-phenyl-hexafluoro-2-propanol has been reported to be 8.5, Ref. [18]), we believe there is the possibility for palladium hydride to be formed in the reaction mixture accounting for these isomerizations.
- 18J.-F. Cheng, C. C. Mak, Y, Huang, R. Penuliar, M. Nishimoto, L. Zhang, M. Chen, D. Wallace, T. Arrhenius, D. Chu, G. Yang, M. Barbosa, R. Barr, J. R. B. Dyck, G. D. Lopaschuk, A. M. Nadzan, Bioorg. Med. Chem. Lett. 2006, 16, 3484.
- 19For reviews on the synthesis and applications of fluorosulfates in synthesis including cross-couplings, see:
- 19aJ. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2014, 53, 9430; Angew. Chem. 2014, 126, 9584;
- 19bL. Revathi, L. Ravindar, J. Leng, K. P. Rakesh, H.-L. Qin, Asian. J. Org. Chem. 2018, 7, 662.
- 20For selected applications of aryl fluorosulfates as the SuFEx partner, see:
- 20aJ. Dong, K. B. Sharpless, L. Kwisnek, J. S. Oakdale, V. V. Foking, Angew. Chem. Int. Ed. 2014, 53, 9466; Angew. Chem. 2014, 126, 9620;
- 20bS. Li, L. T. Beringer, S. Chen, S. Averick, Polymer 2015, 78, 37;
- 20cJ. S. Oakdale, L. Kwisnek, V. V. Fokin, Macromolecules 2016, 49, 4473;
- 20dW. Chen, J. Dong, L. Plate, D. E. Mortenson, G. J. Brighty, S. Li, Y. Liu, A. Galmozzi, P. S. Lee, J. J. Hulce, B. F. Cravatt, E. Saez, E. T. Powers, I. A. Wilson, K. B. Sharpless, J. W. Kelly, J. Am. Chem. Soc. 2016, 138, 7353;
- 20eB. Goa, L. Zhang, Q. Zheng, F. Zhou, L. M. Klivansky, J. Lu, Y. Liu, J. Dong, P. Wu, K. B. Sharpless, Nat. Chem. 2017, 9, 1083.
- 21
- 21aC. Veryser, J. Demaerel, V. Bieliūnas, P. Gilles, W. M. De Borggraeve, Org. Lett. 2017, 19, 5244;
- 21bT. Guo, G. Meng, X. Zhan, Q. Yan, T. Ma, L. Xu, K. B. Sharpless, J. Dong, Angew. Chem. Int. Ed. 2018, 57, 2605; Angew. Chem. 2018, 130, 2635;
- 21cH. Zhou, P. Mukherjee, R. Liu, E. Evrard, D. Wang, J. M. Humphrey, T. W. Butler, L. R. Hoth, J. B. Sperry, S. K. Sakata, C. J. Helal, C. W. am Ende, Org. Lett. 2018, 20, 812.
- 22C. Lescot, D. U. Nielsen, I. S. Makarov, A. T. Lindhardt, K. Daasbjerg, T. Skrydstrup, J. Am. Chem. Soc. 2014, 136, 6142.