Noncontinuous Super-Diffusive Dynamics of a Light-Activated Nanobottle Motor
Dr. Mingjun Xuan
Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education), Micro/Nanotechnology Research Centre, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080 China
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10–12, 08028 Barcelona, Spain
These authors contributed equally to this work.
Search for more papers by this authorRafael Mestre
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10–12, 08028 Barcelona, Spain
Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart, Germany
These authors contributed equally to this work.
Search for more papers by this authorDr. Changyong Gao
Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education), Micro/Nanotechnology Research Centre, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080 China
These authors contributed equally to this work.
Search for more papers by this authorChang Zhou
Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education), Micro/Nanotechnology Research Centre, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Prof. Qiang He
Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education), Micro/Nanotechnology Research Centre, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Prof. Samuel Sánchez
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10–12, 08028 Barcelona, Spain
Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart, Germany
Institució Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
Search for more papers by this authorDr. Mingjun Xuan
Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education), Micro/Nanotechnology Research Centre, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080 China
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10–12, 08028 Barcelona, Spain
These authors contributed equally to this work.
Search for more papers by this authorRafael Mestre
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10–12, 08028 Barcelona, Spain
Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart, Germany
These authors contributed equally to this work.
Search for more papers by this authorDr. Changyong Gao
Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education), Micro/Nanotechnology Research Centre, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080 China
These authors contributed equally to this work.
Search for more papers by this authorChang Zhou
Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education), Micro/Nanotechnology Research Centre, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Prof. Qiang He
Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education), Micro/Nanotechnology Research Centre, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Prof. Samuel Sánchez
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10–12, 08028 Barcelona, Spain
Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart, Germany
Institució Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
Search for more papers by this authorGraphical Abstract
Abstract
We report a carbonaceous nanobottle (CNB) motor for near infrared (NIR) light-driven jet propulsion. The bottle structure of the CNB motor is fabricated by soft-template-based polymerization. Upon illumination with NIR light, the photothermal effect of the CNB motor carbon shell causes a rapid increase in the temperature of the water inside the nanobottle and thus the ejection of the heated fluid from the open neck, which propels the CNB motor. The occurrence of an explosion, the on/off motion, and the swing behavior of the CNB motor can be modulated by adjusting the NIR light source. Moreover, we simulated the physical field distribution (temperature, fluid velocity, and pressure) of the CNB motor to demonstrate the mechanism of NIR light-driven jet propulsion. This NIR light-powered CNB motor exhibits fuel-free propulsion and control of the swimming velocity by external light and has great potential for future biomedical applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201801910-sup-0001-misc_information.pdf572.7 KB | Supplementary |
anie201801910-sup-0001-V1.avi2.2 MB | Supplementary |
anie201801910-sup-0001-V2.avi1.2 MB | Supplementary |
anie201801910-sup-0001-V3.avi789.1 KB | Supplementary |
anie201801910-sup-0001-V4.avi3.4 MB | Supplementary |
anie201801910-sup-0001-V5.avi1.1 MB | Supplementary |
anie201801910-sup-0001-V6.avi14 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Wang, Nanomachines: Fundamentals and Applications, Wiley-VCH, Weinheim, 2013;
10.1002/9783527651450 Google Scholar
- 1bW. Gao, J. Wang, ACS Nano 2014, 8, 3170–3180;
- 1cJ. Katuri, X. Ma, M. M. Stanton, S. Sánchez, Acc. Chem. Res. 2017, 50, 2–11.
- 2
- 2aY. Tu, F. Peng, X. Sui, Y. Men, P. B. White, J. C. M. van Hest, D. A. Wilson, Nat. Chem. 2017, 9, 480–486;
- 2bS. Sánchez, L. Soler, J. Katuri, Angew. Chem. Int. Ed. 2015, 54, 1414–1444; Angew. Chem. 2015, 127, 1432–1464.
- 3
- 3aK. Melde, G. A. Mark, T. Qiu, P. Fischer, Nature 2016, 537, 518–522;
- 3bS. Schuerle, I. A. Vizcarra, J. Moeller, M. S. Sakar, Ö. Berna, A. M. Lindo, F. Mushtaq, I. Schoen, S. Pané, V. Vogel, B. J. Nelson, Sci. Robot. 2017, 2, eaah 6094.
- 4
- 4aS. Sengupta, D. Patra, I. Ortiz-Rivera, A. Agrawal, S. Shklyaev, K. K. Dey, U. Córdova-Figueroa, E. T. Mallouk, A. Sen, Nat. Chem. 2014, 6, 415–422;
- 4bY. Mei, A. Solovev, S. Sánchez, O. G. Schmidt, Chem. Soc. Rev. 2011, 40, 2109–2119;
- 4cH. Wang, M. Pumera, Chem. Rev. 2015, 115, 8704–8735.
- 5X. Ma, K. Hahn, S. Sánchez, J. Am. Chem. Soc. 2015, 137, 4976–4979.
- 6W. Gao, S. Sattayasamitsathit, J. Orozco, J. Wang, J. Am. Chem. Soc. 2011, 133, 11862–11864.
- 7D. Walker, B. T. Käsdorf, H. Jeong, O. Lieleg, P. Fischer, Sci. Adv. 2015, 1, e 1500501.
- 8D. Yi, Q. Zhang, Y. Liu, J. Song, Y. Tang, F. Caruso, Y. Wang, Angew. Chem. Int. Ed. 2016, 55, 14733–14737; Angew. Chem. 2016, 128, 14953–14957.
- 9
- 9aD. A. Wilson, R. J. M. Notle, J. C. M. van Hest, Nat. Chem. 2012, 4, 268–274;
- 9bW. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, V. H. Crespi, J. Am. Chem. Soc. 2004, 126, 13424–13431.
- 10
- 10aT. Xu, W. Gao, L. Xu, X. Zhang, S. Wang, Adv. Mater. 2017, 29, 1603250;
- 10bL. Zhang, J. J. Abbott, L. Dong, K. E. Peyer, B. E. Kratochvil, H. Zhang, C. Bergeles, B. J. Nelson, Nano Lett. 2009, 9, 3663–3667;
- 10cX. Chen, B. Jang, D. Ahmed, C. Hu, C. De Marco, M. Hoop, F. Mushtaq, B. J. Nelson, S. Pané, Adv. Mater. 2018, 170561.
- 11
- 11aL. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Chem. Soc. Rev. 2017, 46, 6905–6926;
- 11bB. Dai, J. Wang, Z. Xiong, X. Zhan, W. Dai, C. Li, S. Fang, J. Tang, Nat. Nanotechnol. 2016, 11, 1087–1092;
- 11cB. Jang, A. Hong, H. E. Kang, C. Alcantara, S. Charreyron, F. Mushtaq, E. Pellicer, R. Büchel, J. Sort, S. S. Lee, B. J. Nelson, S. Pané, ACS Nano 2017, 11, 6146–6154.
- 12
- 12aC. Chen, F. Mou, L. Xu, S. Wang, J. Guan, Z. Feng, Q. Wang, L. Kong, W. Li, J. Wang, Q. Zhang, Adv. Mater. 2017, 29, 1603374;
- 12bR. Dong, Y. Hu, F. Wu, W. Gao, B. Ren, Q. Wang, Y. Cai, J. Am. Chem. Soc. 2017, 139, 1722–1725.
- 13
- 13aF. Meng, W. Hao, S. Yu, R. Feng, Y. Liu, F. Yu, P. Tao, W. Shang, J. Wu, C. Song, T. Deng, J. Am. Chem. Soc. 2017, 139, 12362–12365;
- 13bH. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 2010, 105, 268302;
- 13cM. Xuan, Z. Wu, J. Shao, L. Dai, T. Si, Q. He, J. Am. Chem. Soc. 2016, 138, 6492–6497.
- 14W. Qin, T. Peng, Y. Gao, F. Wang, X. Hu, K. Wang, J. Shi, D. Li, J. Ren, C. Fan, Angew. Chem. Int. Ed. 2017, 56, 515–518; Angew. Chem. 2017, 129, 530–533.
- 15
- 15aG. Hong, S. Diao, A. L. Antaris, H. Dai, Chem. Rev. 2015, 115, 10816–10906;
- 15bD. Wang, F. Li, M. Liu, G. Lu, H. Cheng, Angew. Chem. Int. Ed. 2008, 47, 373–376; Angew. Chem. 2008, 120, 379–382.
- 16
- 16aV. Magdanz, G. Stoychev, L. Ionov, S. Sanchez, O. G. Schmidt, Angew. Chem. Int. Ed. 2014, 53, 2673–2677; Angew. Chem. 2014, 126, 2711–2715;
- 16bX. Ma, S. Jang, M. N. Popescu, W. E. Uspal, A. Miguel-Lόpez, K. Hahn, D. Kim, S. Sánchez, ACS Nano 2016, 10, 8751–8759;
- 16cY. Tu, F. Peng, A. A. M. André, Y. Men, M. Srinivas, D. A. Wilson, ACS Nano 2017, 11, 1957–1963.
- 17C. Chen, H. Wang, C. Han, J. Deng, J. Wang, M. Li, M. Tang, H. Jin, Y. Wang, J. Am. Chem. Soc. 2017, 139, 2657–2663.
- 18A. S. Rajan, S. Sampath, A. K. Shukla, Energy Environ. Sci. 2014, 7, 1110–1116.
- 19T. Li, S. Kheifets, D. Medellin, M. G. Raizen, Science 2010, 328, 1673–1675.
- 20
- 20aR. Metzler, J. Klafter, J. Phys. Rep. 2000, 339, 1–77;
- 20bF. Höfling, T. Franosch, Rep. Prog. Phys. 2013, 76, 046602;
- 20cR. Golestanian, Phys. Rev. Lett. 2009, 102, 188305.