Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2-Filmed Ultramicroelectrode
Yue-Yi Peng
Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorHui Ma
Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Wei Ma
Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
Search for more papers by this authorProf. Yi-Tao Long
Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Prof. He Tian
Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
Search for more papers by this authorYue-Yi Peng
Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorHui Ma
Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Wei Ma
Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
Search for more papers by this authorProf. Yi-Tao Long
Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Prof. He Tian
Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
Search for more papers by this authorGraphical Abstract
Single-nanoparticle photoelectrochemistry: A phototelectrochemical method is used for quantifying the electron transfer of a single N719@TiO2 nanoparticle and evaluating the nanostructured TiO2 film by experiment and simulation. These results provide new insights to facilitate the fabrication of photoelectrochemical devices with better performance.
Abstract
An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO2-filmed Au ultra-microelectrode (TiO2@Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO2 (N719@TiO2) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO2@Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201710568-sup-0001-misc_information.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Grätzel, Nature 2001, 414, 338–344;
- 1bJ. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, J. K. Norskov, Nat. Mater. 2017, 16, 70–81;
- 1cA. J. Bard, Science 1980, 207, 139–144.
- 2
- 2aX. Li, X. Y. Zhang, J. L. Hua, H. Tian, Mol. Syst. Des. Eng. 2017, 2, 98–122;
- 2bB. O'regan, M. Grätzel, Nature 1991, 353, 737–740;
- 2cA. Hagfeldtt, M. Grätzel, Chem. Rev. 1995, 95, 49–68;
- 2dA. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595–6663.
- 3
- 3aM, Grätzel, Acc. Chem. Res. 2009, 42, 1788–1798;
- 3bA. Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269–277.
- 4
- 4aJ. B. Asbury, E. Hao, Y. Q. Wang, T. Q. Lian, J. Phys. Chem. B 2000, 104, 11957–11964;
- 4bJ. B. Asbury, E. Hao, Y. Q. Wang, H. N. Ghosh, T. Q. Lian, J. Phys. Chem. B 2001, 105, 4545–4557;
- 4cA. Yella, H. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. Nazeeruddin, E. W. Diau, C. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629–634;
- 4dG. Schlichthörl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B 1997, 101, 8141–8155;
- 4e“Multiscale Modelling of Organic and Hybrid Photovoltaics”: J. Bisquert, R. A. Marcus in Topics in Current Chemistry, Vol. 352 (Eds.: ), Springer, Berlin, 2013, pp. 325–396.
- 5
- 5aS. Ardo, G. J. Meyer, Chem. Soc. Rev. 2009, 38, 115–164;
- 5bM. Urbani, M. Grätzel, M. K. Nazeeruddin, T. Torres, Chem. Rev. 2014, 114, 12330–12396;
- 5cJ. H. Wu, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fan, G. G. Luo, Chem. Rev. 2015, 115, 2136–2173.
- 6
- 6aJ. N. Clifford, E. Martinez-Ferrero, A. Viterisi, E. Palomares, Chem. Soc. Rev. 2011, 40, 1635–1646;
- 6bM. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nat. Mater. 2005, 4, 455–459.
- 7
- 7aS. E. Koops, B. C. O'Regan, P. R. F. Barnes, J. R. Durrant, J. Am. Chem. Soc. 2009, 131, 4808–4818;
- 7bM. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382–6390;
- 7cN. Hirata, J. Lagref, E. J. Palomares, J. R. Durrant, M. K. Nazeeruddin, M. Grätzel, D. D. Censo, Chem. Eur. J. 2004, 10, 595–602.
- 8
- 8aY. Y. Peng, R. C. Qian, M. E. Hafez, Y. T. Long, ChemElectroChem 2017, 4, 977–985;
- 8bY. L. Ying, Z. F. Ding, D. P. Zhan, Y. T. Long, Chem. Sci. 2017, 8, 3338–3348;
- 8cT. Albrecht, J. MacPherson, O. Magnussen, D. Fermin, R. M. Crooks, J. J. Gooding, T. Hersbach, F. Kanoufi, W. Schuhmann, C. Bentley, N. J. Tao, S. Mitra, K. Krischer, K. Tschulik, S. Faez, W. Nogala, P. R. Unwin, Y. T. Long, M. Koper, Z. Q. Tian, M. A. Alpuche-Aviles, H. S. White, V. Brasiliense, C. Kranz, W. Schmickler, K. J. Stevenson, C. Jing, M. Edwards, Faraday Discuss. 2016, 193, 387–413.
- 9
- 9aX. Y. Xiao, A. J. Bard, J. Am. Chem. Soc. 2007, 129, 9610–9612;
- 9bL. J. Zhao, R. C. Qian, W. Ma, H. Tian, Y. T. Long, Anal. Chem. 2016, 88, 8375–8379;
- 9cB. M. Quinn, P. G. van't Hof, S. G. Lemay, J. Am. Chem. Soc. 2004, 126, 8360–8361;
- 9dJ. E. Dick, C. Renault, A. J. Bard, J. Am. Chem. Soc. 2015, 137, 8376–8379;
- 9eY. G. Zhou, N. V. Rees, R. G. Compton, Angew. Chem. Int. Ed. 2011, 50, 4219–4221; Angew. Chem. 2011, 123, 4305–4307;
- 9fW. Ma, H. Ma, J. F. Chen, Y. Y. Peng, Z. Y. Yang, H. F. Wang, Y. L. Ying, H. Tian, Y. T. Long, Chem. Sci. 2017, 8, 1854–1861;
- 9gJ. Ustarroz, M. Kang, E. Bullionsa, P. R. Unwin, Chem. Sci. 2017, 8, 1841–1853.
- 10
- 10aA. Fernando, S. Parajuli, M. A. Alpuche-Aviles, J. Am. Chem. Soc. 2013, 135, 10894–10897;
- 10bA. Fernando, P. Chhetri, K. K. Barakoti, S. Parajuli, R. Kazemi, M. A. Alpuche-Aviles, J. Electrochem. Soc. 2016, 163, 3025–3031;
- 10cK. K. Barakoti, S. Parajuli, P. Chhetri, G. R. Rana, R. Kazemi, R. Malkiewich, M. A. Alpuche-Aviles, Faraday Discuss. 2016, 193, 313–325;
- 10dB. H. Simpson, J. Rodriguez-Lopez, Anal. Methods 2015, 7, 7029–7041.
- 11L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, I. Uhlendorf, J. Phys. Chem. B 1997, 101, 10281–10289.
- 12S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, Thin Solid Films 2008, 516, 4613–4619.
- 13I. Chung, B. Lee, J. Q. He, R. P. H. Chang, M. G. Kanatzidis, Nature 2012, 485, 486–489.
- 14
- 14aJ. van de Lagemaat, A. J. Frank, J. Phys. Chem. B 2000, 104, 4292–4294;
- 14bJ. van de Lagemaat, A. J. Frank, J. Phys. Chem. B 2001, 105, 11194–11205.
- 15
- 15aD. Thirumalai, R. D. Mountain, Phys. Rev. E 1993, 47, 479–489;
- 15bR. Yamamoto, A. Onuki, Phys. Rev. Lett. 1998, 81, 4915–4918;
- 15cA Fourier transform process at https://physics.ucf.edu/∼schellin/teaching/phz3113/lec13-3.pdf;
- 15dAn open class about Einstein Diffusion Equation from Theoretical and Computational Biophysics Group at http://www.ks.uiuc.edu/Services/Class/PHYS498/LectureNotes/chp3.pdf.
- 16
- 16aZ. Gu, Y. L. Ying, C. Cao, P. G. He, Y. T. Long, Anal. Chem. 2015, 87, 907–913;
- 16bD. Pedone, M. Firnkes, U. Rant, Anal. Chem. 2009, 81, 9689–9694.
- 17
- 17aA. Boika, A. J. Bard, Anal. Chem. 2015, 87, 4341–4346;
- 17bE. Lebègue, C. M. Anderson, J. E. Dick, L. J. Webb, A. J. Bard, Langmuir 2015, 31, 11734–11739;
- 17cM. Kang, D. Perry, Y. R. Kim, A. W. Colburn, R. A. Lazenby, P. R. Unwin, J. Am. Chem. Soc. 2015, 137, 10902–10905.
- 18
- 18aN.-G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A. J. Frank, J. Phys. Chem. B 1999, 103, 3308–3314;
- 18bJ. Krüger, R. Plass, M. Grätzel, P. J. Cameron, L. M. Peter, J. Phys. Chem. B 2003, 107, 7536–7539.