Signal Amplification by Reversible Exchange (SABRE): From Discovery to Diagnosis
Dr. Peter J. Rayner
Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5DD UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Simon B. Duckett
Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5DD UK
Search for more papers by this authorDr. Peter J. Rayner
Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5DD UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Simon B. Duckett
Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5DD UK
Search for more papers by this authorGraphical Abstract
SABRE-rattling: Signal amplification by reversible exchange (SABRE) is a hyperpolarization technique that dramatically enhances magnetic resonance signals. This Minireview tracks its development since its discovery in 2009 and offers an outlook on its potential use for both analytic sciences and disease diagnosis.
Abstract
Signal amplification by reversible exchange (SABRE) turns typically weak magnetic resonance responses into strong signals making previously impractical measurements possible. This technique has gained significant popularity because of its speed and simplicity. This Minireview tracks the development of SABRE from the initial hyperpolarization of pyridine in 2009 to the point in which 50 % 1H polarization levels have been achieved in a di-deuterio-nicotinate, a key step in the pathway to potential clinical use. Simple routes to highly efficient 15N hyperpolarization and the creation of hyperpolarized long-lived magnetic states are illustrated. To conclude, we describe how the recently reported SABRE-RELAY approach offers a route for parahydrogen to hyperpolarize a much wider array of molecular scaffolds, such as amides, alcohols, carboxylic acids, and phosphates, than was previously thought possible. We predict that collectively these developments ensure that SABRE will significantly impact on both chemical analysis and the diagnosis of disease in the future.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aJ. Kurhanewicz, D. B. Vigneron, K. Brindle, E. Y. Chekmenev, A. Comment, C. H. Cunningham, R. J. DeBerardinis, G. G. Green, M. O. Leach, S. S. Rajan, R. R. Rizi, B. D. Ross, W. S. Warren, C. R. Malloy, Neoplasia 2011, 13, 81–97;
- 1bK. R. Keshari, D. M. Wilson, Chem. Soc. Rev. 2014, 43, 1627–1659;
- 1cS. J. Nelson, J. Kurhanewicz, D. B. Vigneron, P. E. Z. Larson, A. L. Harzstark, M. Ferrone, M. van Criekinge, J. W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E. J. Small, P. Munster, V. K. Weinberg, J. H. Ardenkjaer-Larsen, A. P. Chen, R. E. Hurd, L.-I. Odegardstuen, F. J. Robb, J. Tropp, J. A. Murray, Sci. Transl. Med. 2013, 5, 198ra108;
- 1dT. B. Rodrigues, E. M. Serrao, B. W. C. Kennedy, D.-E. Hu, M. I. Kettunen, K. M. Brindle, Nat. Med. 2014, 20, 93–97;
- 1eH. Gutte, A. E. Hansen, H. H. Johannesen, A. E. Clemmensen, J. H. Ardenkjær-Larsen, C. H. Nielsen, A. Kjær, Am. J. Nucl. Med. Mol. Imaging 2015, 5, 548–560;
- 1fJ. H. Ardenkjær-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 2003, 100, 10158–10163;
- 1gC. H. Cunningham, J. Y. C. Lau, A. P. Chen, B. J. Geraghty, W. J. Perks, I. Roifman, G. A. Wright, K. A. Connelly, Circ. Res. 2016, 119, 1177–1182.
- 2P. Nikolaou, A. M. Coffey, L. L. Walkup, B. M. Gust, N. Whiting, H. Newton, I. Muradyan, M. Dabaghyan, K. Ranta, G. D. Moroz, M. S. Rosen, S. Patz, M. J. Barlow, E. Y. Chekmenev, B. M. Goodson, Magn. Reson. Imaging 2014, 32, 541–550.
- 3L. Frydman, Nat. Chem. 2009, 1, 176–178.
- 4
- 4aV. Daniele, F. X. Legrand, P. Berthault, J. N. Dumez, G. Huber, ChemPhysChem 2015, 16, 3413–3417;
- 4bJ.-N. Dumez, J. Milani, B. Vuichoud, A. Bornet, J. Lalande-Martin, I. Tea, M. Yon, M. Maucourt, C. Deborde, A. Moing, L. Frydman, G. Bodenhausen, S. Jannin, P. Giraudeau, Analyst 2015, 140, 5860–5863;
- 4cN. K. J. Hermkens, N. Eshuis, B. J. A. van Weerdenburg, M. C. Feiters, F. P. J. T. Rutjes, S. S. Wijmenga, M. Tessari, Anal. Chem. 2016, 88, 3406–3412;
- 4dI. Reile, N. Eshuis, N. K. J. Hermkens, B. J. A. van Weerdenburg, M. C. Feiters, F. Rutjes, M. Tessari, Analyst 2016, 141, 4001–4005;
- 4eN. Eshuis, N. Hermkens, B. J. A. van Weerdenburg, M. C. Feiters, F. Rutjes, S. S. Wijmenga, M. Tessari, J. Am. Chem. Soc. 2014, 136, 2695–2698;
- 4fN. Eshuis, R. Aspers, B. J. A. van Weerdenburg, M. C. Feiters, F. Rutjes, S. S. Wijmenga, M. Tessari, Angew. Chem. Int. Ed. 2015, 54, 14527–14530; Angew. Chem. 2015, 127, 14735–14738.
- 5
- 5aS. Wildschütz, P. Hübler, J. Bargon, ChemPhysChem 2001, 2, 328–331;
- 5bD. Guan, A. J. Holmes, J. Lopez-Serrano, S. B. Duckett, Catal. Sci. Technol. 2017, 7, 2101–2109;
- 5cS. B. Duckett, N. J. Wood, Coord. Chem. Rev. 2008, 252, 2278–2291;
- 5dJ. López-Serrano, S. B. Duckett, J. P. Dunne, C. Godard, A. C. Whitwood, Dalton Trans. 2008, 4270–4281.
- 6C. R. Bowers, D. P. Weitekamp, J. Am. Chem. Soc. 1987, 109, 5541–5542.
- 7R. A. Green, R. W. Adams, S. B. Duckett, R. E. Mewis, D. C. Williamson, G. G. R. Green, Prog. Nucl. Magn. Reson. Spectrosc. 2012, 67, 1–48.
- 8
- 8aF. Reineri, T. Boi, S. Aime, Nat. Commun. 2015, 6, 5858;
- 8bE. Cavallari, C. Carrera, S. Aime, F. Reineri, Chem. Eur. J. 2017, 23, 1200–1204.
- 9R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, G. G. R. Green, I. G. Khazal, J. López-Serrano, D. C. Williamson, Science 2009, 323, 1708–1711.
- 10R. W. Adams, S. B. Duckett, R. A. Green, D. C. Williamson, G. G. R. Green, J. Chem. Phys. 2009, 131, 194505.
- 11A. N. Pravdivtsev, A. V. Yurkovskaya, H. M. Vieth, K. L. Ivanov, R. Kaptein, ChemPhysChem 2013, 14, 3327–3331.
- 12
- 12aK. D. Atkinson, M. J. Cowley, S. B. Duckett, P. I. P. Elliott, G. G. R. Green, J. López-Serrano, I. G. Khazal, A. C. Whitwood, Inorg. Chem. 2009, 48, 663–670;
- 12bA. N. Pravdivtsev, A. V. Yurkovskaya, H. M. Vieth, K. L. Ivanov, J. Phys. Chem. B 2015, 119, 13619–13629;
- 12cT. Theis, M. Truong, A. M. Coffey, E. Y. Chekmenev, W. S. Warren, J. Magn. Reson. 2014, 248, 23–26.
- 13
- 13aK. L. Ivanov, A. N. Pravdivtsev, A. V. Yurkovskaya, H. M. Vieth, R. Kaptein, Prog. Nucl. Magn. Reson. Spectrosc. 2014, 81, 1–36;
- 13bD. A. Barskiy, A. N. Pravdivtsev, K. L. Ivanov, K. V. Kovtunov, I. V. Koptyug, Phys. Chem. Chem. Phys. 2016, 18, 89–93;
- 13cS. Knecht, A. N. Pravdivtsev, J.-B. Hovener, A. V. Yurkovskaya, K. L. Ivanov, RSC Adv. 2016, 6, 24470–24477.
- 14A. J. Holmes, P. J. Rayner, M. J. Cowley, G. G. R. Green, A. C. Whitwood, S. B. Duckett, Dalton Trans. 2015, 44, 1077–1083.
- 15N. Eshuis, R. Aspers, B. J. A. van Weerdenburg, M. C. Feiters, F. Rutjes, S. S. Wijmenga, M. Tessari, J. Magn. Reson. 2016, 265, 59–66.
- 16K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, G. G. R. Green, J. López-Serrano, A. C. Whitwood, J. Am. Chem. Soc. 2009, 131, 13362–13368.
- 17M. J. Cowley, R. W. Adams, K. D. Atkinson, M. C. R. Cockett, S. B. Duckett, G. G. R. Green, J. A. B. Lohman, R. Kerssebaum, D. Kilgour, R. E. Mewis, J. Am. Chem. Soc. 2011, 133, 6134–6137.
- 18L. S. Lloyd, A. Asghar, M. J. Burns, A. Charlton, S. Coombes, M. J. Cowley, G. J. Dear, S. B. Duckett, G. R. Genov, G. G. R. Green, L. A. R. Highton, A. J. J. Hooper, M. Khan, I. G. Khazal, R. J. Lewis, R. E. Mewis, A. D. Roberts, A. J. Ruddlesden, Catal. Sci. Technol. 2014, 4, 3544–3554.
- 19B. J. A. van Weerdenburg, S. Gloggler, N. Eshuis, A. H. J. Engwerda, J. M. M. Smits, R. de Gelder, S. Appelt, S. S. Wymenga, M. Tessari, M. C. Feiters, B. Blumich, F. Rutjes, Chem. Commun. 2013, 49, 7388–7390.
- 20M. Fekete, P. J. Rayner, G. G. R. Green, S. B. Duckett, Magn. Reson. Chem. 2017, 55, 944–957.
- 21S. V. C. Vummaleti, D. J. Nelson, A. Poater, A. Gomez-Suarez, D. B. Cordes, A. M. Z. Slawin, S. P. Nolan, L. Cavallo, Chem. Sci. 2015, 6, 1895–1904.
- 22B. J. A. van Weerdenburg, N. Eshuis, M. Tessari, F. Rutjes, M. C. Feiters, Dalton Trans. 2015, 44, 15387–15390.
- 23
- 23aA. J. Ruddlesden, R. E. Mewis, G. G. R. Green, A. C. Whitwood, S. B. Duckett, Organometallics 2015, 34, 2997–3006;
- 23bM. Fekete, O. Bayfield, S. B. Duckett, S. Hart, R. E. Mewis, N. Pridmore, P. J. Rayner, A. Whitwood, Inorg. Chem. 2013, 52, 13453–13461.
- 24W. Iali, G. G. R. Green, S. J. Hart, A. C. Whitwood, S. B. Duckett, Inorg. Chem. 2016, 55, 11639–11643.
- 25E. B. Dücker, L. T. Kuhn, K. Münnemann, C. Griesinger, J. Magn. Reson. 2012, 214, 159–165.
- 26R. E. Mewis, K. D. Atkinson, M. J. Cowley, S. B. Duckett, G. G. R. Green, R. A. Green, L. A. R. Highton, D. Kilgour, L. S. Lloyd, J. A. B. Lohman, D. C. Williamson, Magn. Reson. Chem. 2014, 52, 358–369.
- 27
- 27aT. Theis, M. L. Truong, A. M. Coffey, R. V. Shchepin, K. W. Waddell, F. Shi, B. M. Goodson, W. S. Warren, E. Y. Chekmenev, J. Am. Chem. Soc. 2015, 137, 1404–1407;
- 27bM. L. Truong, T. Theis, A. M. Coffey, R. V. Shchepin, K. W. Waddell, F. Shi, B. M. Goodson, W. S. Warren, E. Y. Chekmenev, J. Phys. Chem. C 2015, 119, 8786–8797.
- 28V. V. Zhivonitko, I. V. Skovpin, I. V. Koptyug, Chem. Commun. 2015, 51, 2506–2509.
- 29
- 29aA. N. Pravdivtsev, A. V. Yurkovskaya, N. N. Lukzen, H. M. Vieth, K. L. Ivanov, Phys. Chem. Chem. Phys. 2014, 16, 18707–18719;
- 29bA. N. Pravdivtsev, A. V. Yurkovskaya, H. Zimmermann, H. M. Vieth, K. L. Ivanov, Chem. Phys. Lett. 2016, 661, 77–82.
- 30G. Stevanato, J. Magn. Reson. 2017, 274, 148–162.
- 31S. S. Roy, G. Stevanato, P. J. Rayner, S. B. Duckett, J. Magn. Reson. 2017, 285, 55–60.
- 32R. E. Mewis, R. A. Green, M. C. R. Cockett, M. J. Cowley, S. B. Duckett, G. G. R. Green, R. O. John, P. J. Rayner, D. C. Williamson, J. Phys. Chem. B 2015, 119, 1416–1424.
- 33P. J. Rayner, M. J. Burns, A. M. Olaru, P. Norcott, M. Fekete, G. G. R. Green, L. A. R. Highton, R. E. Mewis, S. B. Duckett, Proc. Natl. Acad. Sci. USA 2017, 114, E 3188–E3194.
- 34Q. Wang, K. Shen, A. W. J. Logan, J. F. P. Colell, J. Bae, G. X. Ortiz, Jr., T. Theis, W. S. Warren, S. J. Malcolmson, Angew. Chem. Int. Ed. 2017, 56, 12112; Angew. Chem. 2017, 129, 12280.
- 35P. Norcott, P. J. Rayner, G. G. R. Green, S. B. Duckett, Chem. Eur. J. 2017, 23, 16990–16997.
- 36R. E. Mewis, M. Fekete, G. G. R. Green, A. C. Whitwood, S. B. Duckett, Chem. Commun. 2015, 51, 9857–9859.
- 37R. V. Shchepin, D. A. Barskiy, A. M. Coffey, B. M. Goodson, E. Y. Chekmenev, ChemistrySelect 2016, 1, 2552–2555.
- 38K. M. Appleby, R. E. Mewis, A. M. Olaru, G. G. R. Green, I. J. S. Fairlamb, S. B. Duckett, Chem. Sci. 2015, 6, 3981–3993.
- 39A. M. Olaru, M. J. Burns, G. G. R. Green, S. B. Duckett, Chem. Sci. 2017, 8, 2257–2266.
- 40J. B. Hovener, N. Schwaderlapp, T. Lickert, S. B. Duckett, R. E. Mewis, L. A. R. Highton, S. M. Kenny, G. G. R. Green, D. Leibfritz, J. G. Korvink, J. Hennig, D. von Elverfeldt, Nat. Commun. 2013, 4, 2946.
- 41H. F. Zeng, J. D. Xu, J. Gillen, M. T. McMahon, D. Artemov, J. M. Tyburn, J. A. B. Lohman, R. E. Mewis, K. D. Atkinson, G. G. R. Green, S. B. Duckett, P. C. M. van Zijl, J. Magn. Reson. 2013, 237, 73–78.
- 42H. Allouche-Arnon, M. H. Lerche, M. Karlsson, R. E. Lenkinski, R. Katz-Brull, Contrast Media Mol. Imaging 2011, 6, 499–506.
- 43J. B. Hövener, N. Schwaderlapp, R. Borowiak, T. Lickert, S. B. Duckett, R. E. Mewis, R. W. Adams, M. J. Burns, L. A. R. Highton, G. G. R. Green, A. Olaru, J. Hennig, D. von Elverfeldt, Anal. Chem. 2014, 86, 1767–1774.
- 44M. Carravetta, M. H. Levitt, J. Am. Chem. Soc. 2004, 126, 6228–6229.
- 45A. M. Olaru, S. S. Roy, L. S. Lloyd, S. Coombes, G. G. R. Green, S. B. Duckett, Chem. Commun. 2016, 52, 7842–7845.
- 46S. S. Roy, P. J. Rayner, P. Norcott, G. G. R. Green, S. B. Duckett, Phys. Chem. Chem. Phys. 2016, 18, 24905–24911.
- 47S. S. Roy, P. Norcott, P. J. Rayner, G. G. R. Green, S. B. Duckett, Angew. Chem. Int. Ed. 2016, 55, 15642–15645; Angew. Chem. 2016, 128, 15871–15874.
- 48T. Theis, M. P. Ledbetter, G. Kervern, J. W. Blanchard, P. J. Ganssle, M. C. Butler, H. D. Shin, D. Budker, A. Pines, J. Am. Chem. Soc. 2012, 134, 3987–3990.
- 49
- 49aJ. F. P. Colell, A. W. J. Logan, Z. J. Zhou, R. V. Shchepin, D. A. Barskiy, G. X. Ortiz, Q. Wang, S. J. Malcolmson, E. Y. Chekmenev, W. S. Warren, T. Theis, J. Phys. Chem. C 2017, 121, 6626–6634;
- 49bR. V. Shchepin, D. A. Barskiy, A. M. Coffey, T. Theis, F. Shi, W. S. Warren, B. M. Goodson, E. Y. Chekmenev, ACS Sens. 2016, 1, 640–644;
- 49cR. V. Shchepin, D. A. Barskiy, D. M. Mikhaylov, E. Y. Chekmenev, Bioconjugate Chem. 2016, 27, 878–882.
- 50A. W. J. Logan, T. Theis, J. F. P. Colell, W. S. Warren, S. J. Malcolmson, Chem. Eur. J. 2016, 22, 10777–10781.
- 51T. Theis, G. X. Ortiz, A. W. J. Logan, K. E. Claytor, Y. Feng, W. P. Huhn, V. Blum, S. J. Malcolmson, E. Y. Chekmenev, Q. Wang, W. S. Warren, Sci. Adv. 2016, 2, e 1501438.
- 52D. A. Barskiy, R. V. Shchepin, A. M. Coffey, T. Theis, W. S. Warren, B. M. Goodson, E. Y. Chekmenev, J. Am. Chem. Soc. 2016, 138, 8080–8083.
- 53R. V. Shchepin, M. L. Truong, T. Theis, A. M. Coffey, F. Shi, K. W. Waddell, W. S. Warren, B. M. Goodson, E. Y. Chekmenev, J. Phys. Chem. Lett. 2015, 6, 1961–1967.
- 54
- 54aP. Bhattacharya, E. Y. Chekmenev, W. F. Reynolds, S. Wagner, N. Zacharias, H. R. Chan, R. Bünger, B. D. Ross, NMR Biomed. 2011, 24, 1023–1028;
- 54bA. Comment, M. E. Merritt, Biochemistry 2014, 53, 7333–7357;
- 54cN. M. Zacharias, H. R. Chan, N. Sailasuta, B. D. Ross, P. Bhattacharya, J. Am. Chem. Soc. 2012, 134, 934–943.
- 55D. A. Barskiy, R. V. Shchepin, C. P. N. Tanner, J. F. P. Colell, B. M. Goodson, T. Theis, W. S. Warren, E. Y. Chekmenev, ChemPhysChem 2017, 18, 1493–1498.
- 56S. S. Roy, P. Norcott, P. J. Rayner, G. G. R. Green, S. B. Duckett, Chem. Eur. J. 2017, 23, 10496–10500.
- 57Z. Zhou, J. Yu, J. F. P. Colell, R. Laasner, A. Logan, D. A. Barskiy, R. V. Shchepin, E. Y. Chekmenev, V. Blum, W. S. Warren, T. Theis, J. Phys. Chem. Lett. 2017, 8, 3008–3014.
- 58M. J. Burns, P. J. Rayner, G. G. R. Green, L. A. R. Highton, R. E. Mewis, S. B. Duckett, J. Phys. Chem. B 2015, 119, 5020–5027.
- 59R. V. Shchepin, B. M. Goodson, T. Theis, W. S. Warren, E. Y. Chekmenev, ChemPhysChem 2017, 18, 1961–1965.
- 60A. M. Olaru, A. Burt, P. J. Rayner, S. J. Hart, A. C. Whitwood, G. G. R. Green, S. B. Duckett, Chem. Commun. 2016, 52, 14482–14485.
- 61L. S. Lloyd, R. W. Adams, M. Bernstein, S. Coombes, S. B. Duckett, G. G. R. Green, R. J. Lewis, R. E. Mewis, C. J. Sleigh, J. Am. Chem. Soc. 2012, 134, 12904–12907.
- 62L. Frydman, T. Scherf, A. Lupulescu, Proc. Natl. Acad. Sci. USA 2002, 99, 15858–15862.
- 63N. Eshuis, B. J. A. van Weerdenburg, M. C. Feiters, F. Rutjes, S. S. Wijmenga, M. Tessari, Angew. Chem. Int. Ed. 2015, 54, 1481–1484; Angew. Chem. 2015, 127, 1501–1504.
- 64I. Reile, R. L. E. G. Aspers, J.-M. Tyburn, J. G. Kempf, M. C. Feiters, F. P. J. T. Rutjes, M. Tessari, Angew. Chem. Int. Ed. 2017, 56, 9174–9177; Angew. Chem. 2017, 129, 9302–9305.
- 65H. F. Zeng, J. D. Xu, M. T. McMahon, J. A. B. Lohman, P. C. M. van Zijl, J. Magn. Reson. 2014, 246, 119–121.
- 66M. L. Truong, F. Shi, P. He, B. Yuan, K. N. Plunkett, A. M. Coffey, R. V. Shchepin, D. A. Barskiy, K. V. Kovtunov, I. V. Koptyug, K. W. Waddell, B. M. Goodson, E. Y. Chekmenev, J. Phys. Chem. B 2014, 118, 13882–13889.
- 67M. Fekete, C. Gibard, G. J. Dear, G. G. R. Green, A. J. J. Hooper, A. D. Roberts, F. Cisnetti, S. B. Duckett, Dalton Trans. 2015, 44, 7870–7880.
- 68F. Shi, P. He, Q. A. Best, K. Groome, M. L. Truong, A. M. Coffey, G. Zimay, R. V. Shchepin, K. W. Waddell, E. Y. Chekmenev, B. M. Goodson, J. Phys. Chem. C 2016, 120, 12149–12156.
- 69P. Spannring, I. Reile, M. Emondts, P. P. M. Schleker, N. K. J. Hermkens, N. G. J. van der Zwaluw, B. J. A. van Weerdenburg, P. Tinnemans, M. Tessari, B. Blumich, F. Rutjes, M. C. Feiters, Chem. Eur. J. 2016, 22, 9277–9282.
- 70J. F. P. Colell, M. Emondts, A. W. J. Logan, K. Shen, J. Bae, R. V. Shchepin, G. X. Ortiz, P. Spannring, Q. Wang, S. J. Malcolmson, E. Y. Chekmenev, M. C. Feiters, F. P. J. T. Rutjes, B. Blümich, T. Theis, W. S. Warren, J. Am. Chem. Soc. 2017, 139, 7761–7767.
- 71
- 71aI. V. Koptyug, K. V. Kovtunov, S. R. Burt, M. S. Anwar, C. Hilty, S.-I. Han, A. Pines, R. Z. Sagdeev, J. Am. Chem. Soc. 2007, 129, 5580–5586;
- 71bK. V. Kovtunov, I. E. Beck, V. I. Bukhtiyarov, I. V. Koptyug, Angew. Chem. Int. Ed. 2008, 47, 1492–1495; Angew. Chem. 2008, 120, 1514–1517;
- 71cK. V. Kovtunov, I. E. Beck, V. V. Zhivonitko, D. A. Barskiy, V. I. Bukhtiyarov, I. V. Koptyug, Phys. Chem. Chem. Phys. 2012, 14, 11008–11014;
- 71dM. Roth, P. Kindervater, H.-P. Raich, J. Bargon, H. W. Spiess, K. Münnemann, Angew. Chem. Int. Ed. 2010, 49, 8358–8362; Angew. Chem. 2010, 122, 8536–8540;
- 71eM. D. Lingwood, T. A. Siaw, N. Sailasuta, O. A. Abulseoud, H. R. Chan, B. D. Ross, P. Bhattacharya, S. Han, Radiology 2012, 265, 418–425;
- 71fK. V. Kovtunov, V. V. Zhivonitko, I. V. Skovpin, D. A. Barskiy, O. G. Salnikov, I. V. Koptyug, J. Phys. Chem. C 2013, 117, 22887–22893.
- 72F. Shi, A. M. Coffey, K. W. Waddell, E. Y. Chekmenev, B. M. Goodson, Angew. Chem. Int. Ed. 2014, 53, 7495–7498; Angew. Chem. 2014, 126, 7625–7628.
- 73K. V. Kovtunov, L. M. Kovtunova, M. E. Gemeinhardt, A. V. Bukhtiyarov, J. Gesiorski, V. I. Bukhtiyarov, E. Y. Chekmenev, I. V. Koptyug, B. Goodson, Angew. Chem. Int. Ed. 2017, 56, 10433–10437; Angew. Chem. 2017, 129, 10569–10573.
- 74W. Iali, A. M. Olaru, G. G. R. Green, S. B. Duckett, Chem. Eur. J. 2017, 23, 10491–10495.
- 75W. Iali, P. J. Rayner, S. B. Duckett, Sci. Adv. 2018, 4, eaao 6250.