Triplex DNA Nanostructures: From Basic Properties to Applications
Dr. Yuwei Hu
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
These authors contributed equally to this work.
Search for more papers by this authorAlessandro Cecconello
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
These authors contributed equally to this work.
Search for more papers by this authorDr. Andrea Idili
Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133 Rome, Italy
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Francesco Ricci
Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133 Rome, Italy
Search for more papers by this authorCorresponding Author
Prof. Itamar Willner
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
Search for more papers by this authorDr. Yuwei Hu
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
These authors contributed equally to this work.
Search for more papers by this authorAlessandro Cecconello
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
These authors contributed equally to this work.
Search for more papers by this authorDr. Andrea Idili
Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133 Rome, Italy
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Francesco Ricci
Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133 Rome, Italy
Search for more papers by this authorCorresponding Author
Prof. Itamar Willner
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
Search for more papers by this authorGraphical Abstract
DNA triplex structures are stabilized by Watson–Crick and Hoogsteen/reverse Hoogsteen interstrand interactions. This Review summarizes recently reported DNA-triplex-based systems and their application as switches, sensors, and for controlled drug delivery. In addition, the implementation of DNA triplex structures for the design of stimuli-responsive materials is presented.
Abstract
Triplex nucleic acids have recently attracted interest as part of the rich “toolbox” of structures used to develop DNA-based nanostructures and materials. This Review addresses the use of DNA triplexes to assemble sensing platforms and molecular switches. Furthermore, the pH-induced, switchable assembly and dissociation of triplex-DNA-bridged nanostructures are presented. Specifically, the aggregation/deaggregation of nanoparticles, the reversible oligomerization of origami tiles and DNA circles, and the use of triplex DNA structures as functional units for the assembly of pH-responsive systems and materials are described. Examples include semiconductor-loaded DNA-stabilized microcapsules, DNA-functionalized dye-loaded metal–organic frameworks (MOFs), and the pH-induced release of the loads. Furthermore, the design of stimuli-responsive DNA-based hydrogels undergoing reversible pH-induced hydrogel-to-solution transitions using triplex nucleic acids is introduced, and the use of triplex DNA to assemble shape-memory hydrogels is discussed. An outlook for possible future applications of triplex nucleic acids is also provided.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aK. M. Vasquez, P. M. Glazer, Q. Rev. Biophys. 2002, 35, 89–107;
- 1bP. P. Chan, P. M. Glazer, J. Mol. Med. 1997, 75, 267–282.
- 2
- 2aI. Radhakrishnan, D. J. Patel, Biochemistry 1994, 33, 11405–11416;
- 2bM. Duca, P. Vekhoff, K. Oussedik, L. Halby, P. B. Arimondo, Nucleic Acids Res. 2008, 36, 5123–5138.
- 3
- 3aL. J. Maher, P. B. Dervan, B. J. Wold, Biochemistry 1990, 29, 8820–8826;
- 3bM. Rougée, B. Faucon, J. L. Mergny, F. Barcelo, C. Giovannangeli, T. Garestier, C. Hélène, Biochemistry 1992, 31, 9269–9278;
- 3cH. Shindo, H. Torigoe, A. Sarai, Biochemistry 1993, 32, 8963–8969.
- 4
- 4aS. F. Singleton, P. B. Dervan, J. Am. Chem. Soc. 1992, 114, 6957–6965;
- 4bG. E. Plum, Y. W. Park, S. F. Singleton, P. B. Dervan, K. J. Breslauer, Proc. Natl. Acad. Sci. USA 1990, 87, 9436–9440.
- 5S. Wärmländer, K. Sandström, M. Leijon, A. Gräslund, Biochemistry 2003, 42, 12589–12595.
- 6R. Zain, J. S. Sun, Cell. Mol. Life Sci. 2003, 60, 862–870.
- 7R. V. Guntaka, B. R. Varma, K. T. Weber, Int. J. Biochem. Cell Biol. 2003, 35, 22–31.
- 8
- 8aP. B. Dervan, R. M. Doss, M. A. Marques, Curr. Med. Chem. Anti-Cancer Agents 2005, 5, 373–387;
- 8bP. W. Hewett, E. L. Daft, C. A. Laughton, S. Ahmad, A. Ahmed, J. C. Murray, Mol. Med. 2006, 12, 8–16.
- 9
- 9aM. Musso, L. D. Nelson, M. W. Van Dyke, Biochemistry 1998, 37, 3086–3095;
- 9bF. Guillonneau, A. L. Guieysse, J. P. Le Caer, J. Rossier, D. Praseuth, Nucleic Acids Res. 2001, 29, 2427–2436.
- 10
- 10aS. Ritchie, F. M. Boyd, J. Wong, K. Bonham, J. Biol. Chem. 2000, 275, 847–854;
- 10bM. Faria, C. D. Wood, L. Perrouault, J. S. Nelson, A. Winter, M. R. White, C. Helene, C. Giovannangeli, Proc. Natl. Acad. Sci. USA 2000, 97, 3862–3867.
- 11H. E. Moser, P. B. Dervan, Science 1987, 238, 645–650.
- 12H. J. Datta, P. P. Chan, K. M. Vasquez, R. C. Gupta, P. M. Glazer, J. Biol. Chem. 2001, 276, 18018–18023.
- 13
- 13aC.-H. Lu, B. Willner, I. Willner, ACS Nano 2013, 7, 8320–8332;
- 13bO. I. Wilner, I. Willner, Chem. Rev. 2012, 112, 2528–2556;
- 13cC. Teller, I. Willner, Curr. Opin. Biotechnol. 2010, 21, 376–391;
- 13dN. C. Seeman, Nature 2003, 421, 427–431;
- 13eD. Y. Zhang, G. Seelig, Nat. Chem. 2011, 3, 103–113.
- 14T. Torring, N. V. Voigt, J. Nangreave, H. Yan, K. V. Gothelf, Chem. Soc. Rev. 2011, 40, 5636–5646.
- 15F. Wang, X. Liu, I. Willner, Angew. Chem. Int. Ed. 2015, 54, 1098–1129; Angew. Chem. 2015, 127, 1112–1144.
- 16
- 16aX. Liu, C.-H. Lu, I. Willner, Acc. Chem. Res. 2014, 47, 1673–1680;
- 16bJ. Bath, A. J. Turberfield, Nat. Nanotechnol. 2007, 2, 275–284;
- 16cM. K. Beissenhirtz, I. Willner, Org. Biomol. Chem. 2006, 4, 3392–3401;
- 16dN. C. Seeman, Trends Biochem. Sci. 2005, 30, 119–125.
- 17
- 17aI. Willner, B. Shlyahovsky, M. Zayats, B. Willner, Chem. Soc. Rev. 2008, 37, 1153–1165;
- 17bA. Okamoto, K. Tanaka, I. Saito, J. Am. Chem. Soc. 2004, 126, 9458–9463;
- 17cG. Seelig, D. Soloveichik, D. Y. Zhang, E. Winfree, Science 2006, 314, 1585–1588.
- 18
- 18aL. Qian, E. Winfree, J. Bruck, Nature 2011, 475, 368–372;
- 18bJ. Elbaz, O. Lioubashevski, F. Wang, F. Remacle, R. D. Levine, I. Willner, Nat. Nanotechnol. 2010, 5, 417–422;
- 18cL. Qian, E. Winfree, Science 2011, 332, 1196–1201.
- 19
- 19aW. Guo, C.-H. Lu, R. Orbach, F. Wang, X.-J. Qi, A. Cecconello, D. Seliktar, I. Willner, Adv. Mater. 2015, 27, 73–78;
- 19bE. Cheng, Y. Xing, P. Chen, Y. Yang, Y. Sun, D. Zhou, L. Xu, Q. Fan, D. Liu, Angew. Chem. Int. Ed. 2009, 48, 7660–7663; Angew. Chem. 2009, 121, 7796–7799;
- 19cW. Guo, C.-H. Lu, X. J. Qi, R. Orbach, M. Fadeev, H. H. Yang, I. Willner, Angew. Chem. Int. Ed. 2014, 53, 10134–10138; Angew. Chem. 2014, 126, 10298–10302;
- 19dC.-H. Lu, W. Guo, Y. Hu, X. J. Qi, I. Willner, J. Am. Chem. Soc. 2015, 137, 15723–15731.
- 20
- 20aK. Gehring, J.-L. Leroy, M. Guéron, Nature 1993, 363, 561–565;
- 20bJ.-L. Leroy, M. Guéron, J.-L. Mergny, C. Hélène, Nucleic Acids Res. 1994, 22, 1600–1606.
- 21
- 21aA. Ono, S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto, Y. Tanaka, Chem. Commun. 2008, 46, 4825–4827;
- 21bG. W. Collie, G. N. Parkinson, Chem. Soc. Rev. 2011, 40, 5867–5892;
- 21cY. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami, A. Ono, J. Am. Chem. Soc. 2006, 128, 2172–2173;
- 21dD. Sen, W. Gilbert, Nature 1988, 334, 364–366.
- 22
- 22aA. A. Beharry, G. A. Woolley, Chem. Soc. Rev. 2011, 40, 4422–4437;
- 22bX. Liang, H. Asanuma, M. Komiyama, J. Am. Chem. Soc. 2002, 124, 1877–1883.
- 23
- 23aC. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S. Lin, J. Am. Chem. Soc. 2003, 125, 4451–4459;
- 23bS. F. J. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka, H. Sugiyama, A. J. Turberfield, Nat. Nanotechnol. 2012, 7, 169–173.
- 24
- 24aJ. SantaLucia, Jr., D. Hicks, Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 415–440;
- 24bD. Y. Zhang, E. Winfree, J. Am. Chem. Soc. 2009, 131, 17303–17314;
- 24cD. Soloveichik, G. Seelig, E. Winfree, Proc. Natl. Acad. Sci. USA 2010, 107, 5393–5398;
- 24dD. Y. Zhang, A. J. Turberfield, B. Yurke, E. Winfree, Science 2007, 318, 1121–1125.
- 25
- 25aD. Li, S. Song, C. Fan, Acc. Chem. Res. 2010, 43, 631–641;
- 25bN. Dai, E. T. Kool, Chem. Soc. Rev. 2011, 40, 5756–5770;
- 25cD. L. Ma, H. Z. He, K. H. Leung, H. J. Zhong, D. S. Chan, C. H. Leung, Chem. Soc. Rev. 2013, 42, 3427–3440;
- 25dN. Venkatesan, Y. J. Seo, B. H. Kim, Chem. Soc. Rev. 2008, 37, 648–663;
- 25eF. Xia, R. J. White, X. Zuo, A. Patterson, Y. Xiao, D. Kang, X. Gong, K. W. Plaxco, A. J. Heeger, J. Am. Chem. Soc. 2010, 132, 14346–14348.
- 26
- 26aC.-H. Lu, I. Willner, Angew. Chem. Int. Ed. 2015, 54, 12212–12235; Angew. Chem. 2015, 127, 12380–12405;
- 26bC. Chen, J. Geng, F. Pu, X. Yang, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2011, 50, 882–886; Angew. Chem. 2011, 123, 912–916;
- 26cA. Rodríguez-Pulido, A. I. Kondrachuk, D. K. Prusty, J. Gao, M. A. Loi, A. Herrmann, Angew. Chem. Int. Ed. 2013, 52, 1008–1012; Angew. Chem. 2013, 125, 1042–1046;
- 26dZ. Zhang, D. Balogh, F. Wang, I. Willner, J. Am. Chem. Soc. 2013, 135, 1934–1940.
- 27
- 27aJ. Shen, L. Xu, C. Wang, H. Pei, R. Tai, S. Song, Q. Huang, C. Fan, G. Chen, Angew. Chem. Int. Ed. 2014, 53, 8338–8342; Angew. Chem. 2014, 126, 8478–8482;
- 27bA. Cecconello, J. S. Kahn, C.-H. Lu, K. L. Khosravi, A. O. Govorov, I. Willner, J. Am. Chem. Soc. 2016, 138, 9895–9901;
- 27cW. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, N. A. Kotov, J. Am. Chem. Soc. 2012, 134, 15114–15121;
- 27dX. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. G. de Abajo, N. Liu, B. Ding, Nano Lett. 2013, 13, 2128–2133;
- 27eY. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, N. A. Kotov, Nano Lett. 2014, 14, 3908–3913;
- 27fA. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, Nature 2012, 483, 311–314;
- 27gW. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, N. A. Kotov, Nat. Commun. 2013, 4, 2655–2660;
- 27hA. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, N. Liu, Nat. Mater. 2014, 13, 862–866.
- 28
- 28aY. Xing, E. Cheng, Y. Yang, P. Chen, T. Zhang, Y. Sun, Z. Yang, D. Liu, Adv. Mater. 2011, 23, 1117–1121;
- 28bL. Peng, M. You, Q. Yuan, C. Wu, D. Han, Y. Chen, Z. Zhong, J. Xue, W. Tan, J. Am. Chem. Soc. 2012, 134, 12302–12307;
- 28cC.-H. Lu, X. J. Qi, R. Orbach, H. H. Yang, I. Mironi-Harpaz, D. Seliktar, I. Willner, Nano Lett. 2013, 13, 1298–1302.
- 29A. Vallée-Bélisle, K. W. Plaxco, Curr. Opin. Struct. Biol. 2010, 20, 518–526.
- 30A. Vallée-Bélisle, F. Ricci, K. W. Plaxco, Proc. Natl. Acad. Sci. USA 2009, 106, 13802–13807.
- 31
- 31aA. Tsourkas, M. A. Behlke, G. Bao, Nucleic Acids Res. 2002, 30, 4208–4215;
- 31bG. Bonnet, S. Tyagi, A. Libchaber, F. R. Kramer, Proc. Natl. Acad. Sci. USA 1999, 96, 6171–6176.
- 32K. W. Plaxco, H. T. Soh, Trends Biotechnol. 2011, 29, 1–5.
- 33
- 33aJ. Zheng, R. Yang, M. Shi, C. Wu, X. Fang, Y. Li, J. Li, W. Tan, Chem. Soc. Rev. 2015, 44, 3036–3055;
- 33bS. Tyagi, F. R. Kramer, Nat. Biotechnol. 1996, 14, 303–308.
- 34
- 34aS. A. Marras, S. Tyagi, F. R. Kramer, Clin. Chim. Acta 2006, 363, 48–60;
- 34bS. Tyagi, D. P. D. Bratu, F. R. Kramer, Nat. Biotechnol. 1998, 16, 49–53.
- 35H. H. El-Hajj, S. A. Marras, S. Tyagi, E. Shashkina, M. Kamboj, T. E. Kiehn, M. S. Glickman, F. R. Kramer, D. Alland, J. Clin. Microbiol. 2009, 47, 1190–1198.
- 36T. N. Grossmann, L. Röglin, O. Seitz, Angew. Chem. Int. Ed. 2007, 46, 5223–5225; Angew. Chem. 2007, 119, 5315–5318.
- 37C. J. Yang, H. Lin, W. Tan, J. Am. Chem. Soc. 2005, 127, 12772–12773.
- 38J. Zheng, J. Li, Y. Jiang, J. Jin, K. Wang, R. Yang, W. Tan, Anal. Chem. 2011, 83, 6586–6592.
- 39J. Zheng, A. Jiao, R. Yang, H. Li, J. Li, M. Shi, C. Ma, Y. Jiang, L. Deng, W. Tan, J. Am. Chem. Soc. 2012, 134, 19957–19960.
- 40
- 40aJ. Zheng, Y. Hu, J. Bai, C. Ma, J. Li, Y. Li, M. Shi, W. Tan, R. Yang, Anal. Chem. 2014, 86, 2205–2212;
- 40bS. Ye, Y. Wu, W. Zhang, N. Li, B. Tang, Chem. Commun. 2014, 50, 9409–9412.
- 41I. Ghosh, C. I. Stains, A. T. Ooi, D. J. Segal, Mol. BioSyst. 2006, 2, 551–560.
- 42
- 42aM. D. Frank-Kamenetskii, S. M. Mirkin, Annu. Rev. Biochem. 1995, 64, 65–95;
- 42bT. Le Doan, L. Perrouault, D. Praseuth, N. Habhoub, J. L. Decout, N. T. Thuong, J. Lhomme, C. Hélène, Nucleic Acids Res. 1987, 15, 7749–7760.
- 43
- 43aT. Antony, V. Subramaniam, Antisense Nucleic Acid Drug Dev. 2002, 12, 145–154;
- 43bT. Antony, T. Thomas, L. H. Sigal, A. Shirahata, T. J. Thomas, Biochemistry 2001, 40, 9387–9395.
- 44D. Xi, X. Wang, S. Ai, S. Zhang, Chem. Commun. 2014, 50, 9547–9549.
- 45D. Zhu, J. Zhu, Y. Zhu, L. Wang, W. Jiang, Chem. Commun. 2014, 50, 14987–14990.
- 46Y. Li, X. Miao, L. Ling, Sci. Rep. 2015, 5, 13010.
- 47
- 47aA. Idili, K. W. Plaxco, A. Vallee-Belisle, F. Ricci, ACS Nano 2013, 7, 10863–10869;
- 47bI. Trkulja, R. Haner, J. Am. Chem. Soc. 2007, 129, 7982–7989;
- 47cE. R. Kandimalla, S. Agrawal, Biochemistry 1996, 35, 15332–15339.
- 48
- 48aE. Del Grosso, A. Idili, A. Porchetta, F. Ricci, Nanoscale 2016, 8, 18057–18061;
- 48bX. Xia, X. Piao, D. Bong, J. Am. Chem. Soc. 2014, 136, 7265–7268;
- 48cX. Piao, X. Xia, D. Bong, Biochemistry 2013, 52, 6313–6323.
- 49
- 49aA. A. Lubin, K. W. Plaxco, Acc. Chem. Res. 2010, 43, 496–505;
- 49bF. Patolsky, A. Lichtenstein, I. Willner, Angew. Chem. Int. Ed. 2000, 39, 940–943;
10.1002/(SICI)1521-3773(20000303)39:5<940::AID-ANIE940>3.0.CO;2-Y CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 970–973;
- 49cF. Patolsky, A. Lichtenstein, I. Willner, Nat. Biotechnol. 2001, 19, 253–257;
- 49dC. Fan, K. W. Plaxco, A. J. Heeger, Proc. Natl. Acad. Sci. USA 2003, 100, 9134–9137.
- 50
- 50aI. Willner, M. Zayats, Angew. Chem. Int. Ed. 2007, 46, 6408–6418; Angew. Chem. 2007, 119, 6528–6538;
- 50bY. Xiao, A. A. Lubin, A. J. Heeger, K. W. Plaxco, Angew. Chem. Int. Ed. 2005, 44, 5456–5459; Angew. Chem. 2005, 117, 5592–5595;
- 50cY. Xiao, R. Y. Lai, K. W. Plaxco, Nat. Protoc. 2007, 2, 2875–2880.
- 51
- 51aG. Pelossof, R. Tel-Vered, I. Willner, Anal. Chem. 2012, 84, 3703–3709;
- 51bY. Xiao, A. A. Rowe, K. W. Plaxco, J. Am. Chem. Soc. 2007, 129, 262–263;
- 51cG. Mor-Piperberg, R. Tel-Vered, J. Elbaz, I. Willner, J. Am. Chem. Soc. 2010, 132, 6878–6879.
- 52X. Cai, G. Rivas, H. Shirashi, P. Farias, J. Wang, M. Tomschik, F. Jelen, E. Paleček, Anal. Chim. Acta 1997, 344, 65–76.
- 53A. Patterson, F. Caprio, A. Vallée-Bélisle, D. Moscone, K. W. Plaxco, G. Palleschi, F. Ricci, Anal. Chem. 2010, 82, 9109–9115.
- 54
- 54aH. Zheng, X. Ma, L. Chen, Z. Lin, L. Guo, B. Qiu, G. Chen, Anal. Methods 2013, 5, 5005–5009;
- 54bZ. Li, X. Miao, K. Xing, A. Zhu, L. Ling, Biosens. Bioelectron. 2015, 74, 687–690.
- 55Y. Xiong, L. Lin, X. Zhang, G. Wang, RSC Adv. 2016, 6, 37681–37688.
- 56S. Ye, H. Li, W. Cao, Biosens. Bioelectron. 2011, 26, 2215–2220.
- 57A. Idili, A. Amodio, M. Vidonis, J. C. Feinberg-Somerson, M. Castronovo, F. Ricci, Anal. Chem. 2014, 86, 9013–9019.
- 58
- 58aX. Wang, A. Jiang, T. Hou, F. Li, Analyst 2014, 139, 6272–6278;
- 58bY. Du, Y. Mao, X. He, K. Wang, G. Yan, J. Liu, Y. Wang, Anal. Methods 2014, 6, 6294–6300.
- 59X. Wang, A. Jiang, T. Hou, F. Li, Anal. Chim. Acta 2015, 890, 91–97.
- 60
- 60aX. M. Li, J. Song, T. Cheng, P. Y. Fu, Anal. Bioanal. Chem. 2013, 405, 5993–5999;
- 60bM. Yang, X. Zhang, H. Liu, H. Kang, Z. Zhu, W. Yang, W. Tan, Anal. Chem. 2015, 87, 5854–5859;
- 60cY. Chen, S. H. Lee, C. Mao, Angew. Chem. Int. Ed. 2004, 43, 5335–5338; Angew. Chem. 2004, 116, 5449–5452;
- 60dM. Brucale, G. Zuccheri, Org. Biomol. Chem. 2005, 3, 575–577;
- 60eB. Kolaric, M. Sliwa, M. Brucale, R. A. L. Vallée, G. Zuccheri, B. Samori, J. Hofkens, F. C. De Schryver, Photochem. Photobiol. Sci. 2007, 6, 614–618.
- 61A. Idili, A. Vallee-Belisle, F. Ricci, J. Am. Chem. Soc. 2014, 136, 5836–5839.
- 62S. Modi, M. G. Swetha, D. Goswami, G. D. Gupta, S. Mayor, Y. Krishnan, Nat. Nanotechnol. 2009, 4, 325–330.
- 63A. Porchetta, A. Idili, A. Vallee-Belisle, F. Ricci, Nano Lett. 2015, 15, 4467–4471.
- 64M. N. Stojanovic, P. de Prada, D. W. Landry, J. Am. Chem. Soc. 2001, 123, 4928–4931.
- 65A. Amodio, B. Zhao, A. Porchetta, A. Idili, M. Castronovo, C. Fan, F. Ricci, J. Am. Chem. Soc. 2014, 136, 16469–16472.
- 66R. M. Dirks, N. A. Pierce, Proc. Natl. Acad. Sci. USA 2004, 101, 15275–15278.
- 67A. Idili, A. Porchetta, A. Amodio, A. Vallee-Belisle, F. Ricci, Nano Lett. 2015, 15, 5539–5544.
- 68
- 68aK. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Chem. Rev. 2012, 112, 2739–2779;
- 68bC.-C. Huang, Z. Yang, K.-H. Lee, H.-T. Chang, Angew. Chem. Int. Ed. 2007, 46, 6824–6828; Angew. Chem. 2007, 119, 6948–6952;
- 68cC. Sönnichsen, B. M. Reinhard, J. Liphardt, A. P. Alivisatos, Nat. Biotechnol. 2005, 23, 741–745;
- 68dP. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Plasmonics 2007, 2, 107–118;
- 68eJ. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater. 2008, 7, 442–453;
- 68fP. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Acc. Chem. Res. 2008, 41, 1578–1586;
- 68gS. Lal, S. Link, N. J. Halas, Nat. Photonics 2007, 1, 641–648;
- 68hS. J. Tan, M. J. Campolongo, D. Luo, W. Cheng, Nat. Nanotechnol. 2011, 6, 268–276.
- 69L. Hu, X. Liu, A. Cecconello, I. Willner, Nano Lett. 2014, 14, 6030–6035.
- 70R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Science 1997, 277, 1078–1081.
- 71
- 71aX. J. Xue, F. Wang, X. G. Liu, J. Am. Chem. Soc. 2008, 130, 3244–3245;
- 71bJ. S. Lee, M. S. Han, C. A. Mirkin, Angew. Chem. Int. Ed. 2007, 46, 4093–4096; Angew. Chem. 2007, 119, 4171–4174;
- 71cJ. Liu, Y. Lu, J. Am. Chem. Soc. 2004, 126, 12298–12305;
- 71dJ. Liu, Y. Lu, J. Am. Chem. Soc. 2003, 125, 6642–6643.
- 72J. Sharma, R. Chhabra, H. Yan, Y. Liu, Chem. Commun. 2007, 477–479.
- 73
- 73aH. Asanuma, T. Ito, T. Yoshida, X. G. Liang, M. Komiyama, Angew. Chem. Int. Ed. 1999, 38, 2393–2395;
10.1002/(SICI)1521-3773(19990816)38:16<2393::AID-ANIE2393>3.0.CO;2-7 CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 2547–2549;10.1002/(SICI)1521-3757(19990816)111:16<2547::AID-ANGE2547>3.0.CO;2-T Web of Science® Google Scholar
- 73bY. Wei, S. Han, J. Kim, S. Soh, B. A. Grzybowski, J. Am. Chem. Soc. 2010, 132, 11018–11020;
- 73cD. S. Sidhaye, S. Kashyap, M. Sastry, S. Hotha, B. L. Prasad, Langmuir 2005, 21, 7979–7984;
- 73dR. Klajn, K. J. Bishop, M. Fialkowski, M. Paszewski, C. J. Campbell, T. P. Gray, B. A. Grzybowski, Science 2007, 316, 261–264.
- 74
- 74aR. Freeman, J. Girsh, I. Willner, ACS Appl. Mater. Interfaces 2013, 5, 2815–2834;
- 74bX. Q. Liu, R. Freeman, E. Golub, I. Willner, ACS Nano 2011, 5, 7648–7655;
- 74cE. Sharon, R. Freeman, I. Willner, Anal. Chem. 2010, 82, 7073–7077;
- 74dR. Freeman, X. Liu, I. Willner, J. Am. Chem. Soc. 2011, 133, 11597–11604.
- 75
- 75aN. Wu, I. Willner, Nano Lett. 2016, 16, 6650–6655;
- 75bA. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, M. Komiyama, Nat. Commun. 2011, 2, 449;
- 75cD. Koirala, P. Shrestha, T. Emura, K. Hidaka, S. Mandal, M. Endo, H. Sugiyama, H. Mao, Angew. Chem. Int. Ed. 2014, 53, 8137–8141; Angew. Chem. 2014, 126, 8275–8279;
- 75dM. Endo, H. Sugiyama, Acc. Chem. Res. 2014, 47, 1645–1653;
- 75eM. Endo, X. W. Xing, X. Zhou, T. Emura, K. Hidaka, B. Tuesuwan, H. Sugiyama, ACS Nano 2015, 9, 9922–9929.
- 76
- 76aY. Yang, M. Endo, K. Hidaka, H. Sugiyama, J. Am. Chem. Soc. 2012, 134, 20645–20653;
- 76bY. Suzuki, M. Endo, Y. Yang, H. Sugiyama, J. Am. Chem. Soc. 2014, 136, 1714–1717.
- 77Y. H. Jung, K. B. Lee, Y. G. Kim, I. S. Choi, Angew. Chem. Int. Ed. 2006, 45, 5960–5963; Angew. Chem. 2006, 118, 6106–6109.
- 78H. L. Yan, C. Xiong, H. Yuan, Z. X. Zeng, L. S. Ling, J. Phys. Chem. C 2009, 113, 17326–17331.
- 79M. S. Han, A. K. Lytton-Jean, C. A. Mirkin, J. Am. Chem. Soc. 2006, 128, 4954–4955.
- 80Y. Chen, C. Mao, Small 2008, 4, 2191–2194.
- 81L. Guerrini, F. McKenzie, A. W. Wark, K. Faulds, D. Graham, Chem. Sci. 2012, 3, 2262.
- 82T. Ihara, T. Ishii, N. Araki, A. W. Wilson, A. Jyo, J. Am. Chem. Soc. 2009, 131, 3826–3827.
- 83C. Xiong, C. Wu, H. Zhang, L. Ling, Spectrochim. Acta Part A 2011, 79, 956–961.
- 84
- 84aD. Han, S. Pal, J. Nangreave, Z. Deng, Y. Liu, H. Yan, Science 2011, 332, 342–346;
- 84bN. V. Voigt, T. Torring, A. Rotaru, M. F. Jacobsen, J. B. Ravnsbaek, R. Subramani, W. Mamdouh, J. Kjems, A. Mokhir, F. Besenbacher, K. V. Gothelf, Nat. Nanotechnol. 2010, 5, 200–203;
- 84cB. Saccà, C. M. Niemeyer, Angew. Chem. Int. Ed. 2012, 51, 58–66; Angew. Chem. 2012, 124, 60–69;
- 84dJ. Nangreave, D. Han, Y. Liu, H. Yan, Curr. Opin. Chem. Biol. 2010, 14, 608–615.
- 85
- 85aA. Rajendran, M. Endo, H. Sugiyama, Angew. Chem. Int. Ed. 2012, 51, 874–890; Angew. Chem. 2012, 124, 898–915;
- 85bM. Endo, Y. Yang, Y. Suzuki, K. Hidaka, H. Sugiyama, Angew. Chem. Int. Ed. 2012, 51, 10518–10522; Angew. Chem. 2012, 124, 10670–10674;
- 85cM. Endo, Y. Takeuchi, Y. Suzuki, T. Emura, K. Hidaka, F. Wang, I. Willner, H. Sugiyama, Angew. Chem. Int. Ed. 2015, 54, 10550–10554; Angew. Chem. 2015, 127, 10696–10700;
- 85dM. Endo, S. Yamamoto, T. Emura, K. Hidaka, N. Morone, J. E. Heuser, H. Sugiyama, Angew. Chem. Int. Ed. 2014, 53, 7484–7490; Angew. Chem. 2014, 126, 7614–7620;
- 85eY. Yang, M. A. Goetzfried, K. Hidaka, M. You, W. Tan, H. Sugiyama, M. Endo, Nano Lett. 2015, 15, 6672–6676;
- 85fA. Rajendran, M. Endo, K. Hidaka, H. Sugiyama, Angew. Chem. Int. Ed. 2014, 53, 4107–4112; Angew. Chem. 2014, 126, 4191–4196.
- 86J. Fu, M. Liu, Y. Liu, N. W. Woodbury, H. Yan, J. Am. Chem. Soc. 2012, 134, 5516–5519.
- 87Y. Yamagata, T. Emura, K. Hidaka, H. Sugiyama, M. Endo, Chem. Eur. J. 2016, 22, 5494–5498.
- 88
- 88aS. S. Jester, M. Famulok, Acc. Chem. Res. 2014, 47, 1700–1709;
- 88bJ. Elbaz, Z. G. Wang, F. Wang, I. Willner, Angew. Chem. Int. Ed. 2012, 51, 2349–2353; Angew. Chem. 2012, 124, 2399–2403;
- 88cF. Lohmann, J. Valero, M. Famulok, Chem. Commun. 2014, 50, 6091–6093;
- 88dY. Liu, A. Kuzuya, R. Sha, J. Guillaume, R. Wang, J. W. Canary, N. C. Seeman, J. Am. Chem. Soc. 2008, 130, 10882–10883;
- 88eC.-H. Lu, A. Cecconello, I. Willner, J. Am. Chem. Soc. 2016, 138, 5172–5185;
- 88fL. Hu, C. H. Lu, I. Willner, Nano Lett. 2015, 15, 2099–2103;
- 88gT. L. Schmidt, A. Heckel, Nano Lett. 2011, 11, 1739–1742;
- 88hC. Mao, W. Sun, N. C. Seeman, Nature 1997, 386, 137–138;
- 88iT. Li, F. Lohmann, M. Famulok, Nat. Commun. 2014, 5, 4940.
- 89C. H. Lu, A. Cecconello, J. Elbaz, A. Credi, I. Willner, Nano Lett. 2013, 13, 2303–2308.
- 90X. J. Qi, C.-H. Lu, X. Liu, S. Shimron, H. H. Yang, I. Willner, Nano Lett. 2013, 13, 4920–4924.
- 91
- 91aC. H. Lu, X. J. Qi, A. Cecconello, S. S. Jester, M. Famulok, I. Willner, Angew. Chem. Int. Ed. 2014, 53, 7499–7503; Angew. Chem. 2014, 126, 7629–7633;
- 91bJ. Elbaz, A. Cecconello, Z. Fan, A. O. Govorov, I. Willner, Nat. Commun. 2013, 4, 2000.
- 92T. Li, M. Famulok, J. Am. Chem. Soc. 2013, 135, 1593–1599.
- 93Y. Hu, J. Ren, C.-H. Lu, I. Willner, Nano Lett. 2016, 16, 4590–4594.
- 94
- 94aE. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Nature 1998, 394, 539–544;
- 94bX. Li, X. Yang, J. Qi, N. C. Seeman, J. Am. Chem. Soc. 1996, 118, 6131–6140.
- 95A. Amodio, A. F. Adedeji, M. Castronovo, E. Franco, F. Ricci, J. Am. Chem. Soc. 2016, 138, 12735–12738.
- 96
- 96aF. Wang, C.-H. Lu, I. Willner, Chem. Rev. 2014, 114, 2881–2941;
- 96bY. Lu, J. Liu, Curr. Opin. Biotechnol. 2006, 17, 580–588.
- 97
- 97aR. Orbach, L. Mostinski, F. Wang, I. Willner, Chem. Eur. J. 2012, 18, 14689–14694;
- 97bJ. Elbaz, B. Shlyahovsky, I. Willner, Chem. Commun. 2008, 1569–1571;
- 97cC.-H. Lu, F. Wang, I. Willner, J. Am. Chem. Soc. 2012, 134, 10651–10658;
- 97dF. Wang, R. Orbach, I. Willner, Chem. Eur. J. 2012, 18, 16030–16036.
- 98J. Liu, Y. Lu, J. Am. Chem. Soc. 2007, 129, 9838–9839.
- 99E. Golub, H. B. Albada, W. C. Liao, Y. Biniuri, I. Willner, J. Am. Chem. Soc. 2016, 138, 164–172.
- 100H. B. Albada, E. Golub, I. Willner, Chem. Sci. 2016, 7, 3092–3101.
- 101
- 101aF. Wang, X. Liu, I. Willner, Angew. Chem. Int. Ed. 2015, 54, 1098–1129; Angew. Chem. 2015, 127, 1112–1144;
- 101bY. S. Kim, M. Liu, Y. Ishida, Y. Ebina, M. Osada, T. Sasaki, T. Hikima, M. Takata, T. Aida, Nat. Mater. 2015, 14, 1002–1007.
- 102
- 102aW. P. Li, P. Y. Liao, C. H. Su, C. S. Yeh, J. Am. Chem. Soc. 2014, 136, 10062–10075;
- 102bK. Zhang, W. Wu, K. Guo, J. Chen, P. Zhang, Langmuir 2010, 26, 7971–7980.
- 103
- 103aM. A. Chen, S. N. Yang, X. X. He, K. M. Wang, P. C. Qiu, D. G. He, J. Mater. Chem. B 2014, 2, 6064–6071;
- 103bQ. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C. H. Yan, W. Tan, ACS Nano 2012, 6, 6337–6344;
- 103cY. Wen, L. Xu, W. Wang, D. Wang, H. Du, X. Zhang, Nanoscale 2012, 4, 4473–4476;
- 103dX. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, X. Qu, Adv. Mater. 2012, 24, 2890–2895;
- 103eF. Tanaka, T. Mochizuki, X. Liang, H. Asanuma, S. Tanaka, K. Suzuki, S. Kitamura, A. Nishikawa, K. Ui-Tei, M. Hagiya, Nano Lett. 2010, 10, 3560–3565;
- 103fA. Rodríguez-Pulido, A. I. Kondrachuk, D. K. Prusty, J. Gao, M. A. Loi, A. Herrmann, Angew. Chem. Int. Ed. 2013, 52, 1008–1012; Angew. Chem. 2013, 125, 1042–1046;
- 103gN. Li, Z. Yu, W. Pan, Y. Han, T. Zhang, B. Tang, Adv. Funct. Mater. 2013, 23, 2255–2262.
- 104
- 104aH. Q. Zheng, Y. Wang, S. N. Che, J. Phys. Chem. C 2011, 115, 16803–16813;
- 104bQ. Yang, S. H. Wang, P. W. Fan, L. F. Wang, Y. Di, K. F. Lin, F. S. Xiao, Chem. Mater. 2005, 17, 5999–6003;
- 104cQ. Gao, Y. Xu, D. Wu, W. Shen, F. Deng, Langmuir 2010, 26, 17133–17138.
- 105
- 105aS. Carregal-Romero, P. Guardia, X. Yu, R. Hartmann, T. Pellegrino, W. J. Parak, Nanoscale 2015, 7, 570–576;
- 105bC. R. Thomas, D. P. Ferris, J. H. Lee, E. Choi, M. H. Cho, E. S. Kim, J. F. Stoddart, J. S. Shin, J. Cheon, J. I. Zink, J. Am. Chem. Soc. 2010, 132, 10623–10625.
- 106
- 106aR. Liu, X. Zhao, T. Wu, P. Feng, J. Am. Chem. Soc. 2008, 130, 14418–14419;
- 106bZ. Luo, K. Cai, Y. Hu, L. Zhao, P. Liu, L. Duan, W. Yang, Angew. Chem. Int. Ed. 2011, 50, 640–643; Angew. Chem. 2011, 123, 666–669;
- 106cX. Wan, D. Wang, S. Liu, Langmuir 2010, 26, 15574–15579;
- 106dZ. X. Zhang, D. Balogh, F. Wang, R. Tel-Vered, N. Levy, S. Y. Sung, R. Nechushtai, I. Willner, J. Mater. Chem. B 2013, 1, 3159–3166.
- 107C. Park, H. Kim, S. Kim, C. Kim, J. Am. Chem. Soc. 2009, 131, 16614–16615.
- 108
- 108aM. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 2007, 46, 7548–7558; Angew. Chem. 2007, 119, 7692–7703;
- 108bM. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano 2008, 2, 889–896;
- 108cA. L. Becker, N. I. Orlotti, M. Folini, F. Cavalieri, A. N. Zelikin, A. P. Johnston, N. Zaffaroni, F. Caruso, ACS Nano 2011, 5, 1335–1344;
- 108dE. M. Shchukina, D. G. Shchukin, Adv. Drug Delivery Rev. 2011, 63, 837–846;
- 108eM. M. de Villiers, Y. M. Lvov, Adv. Drug Delivery Rev. 2011, 63, 699–700.
- 109
- 109aT. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Chem. Soc. Rev. 2013, 42, 4036–4053;
- 109bL. L. del Mercato, A. Z. Abbasi, M. Ochs, W. J. Parak, ACS Nano 2011, 5, 9668–9674.
- 110
- 110aF. Huang, X. Zhou, D. Yao, S. Xiao, H. Liang, Small 2015, 11, 5800–5806;
- 110bX. Han, S. N. Pradeep, K. Critchley, K. Sheikh, R. J. Bushby, S. D. Evans, Chem. Eur. J. 2007, 13, 7957–7964;
- 110cF. Huang, H. Xu, W. Tan, H. Liang, ACS Nano 2014, 8, 6849–6855;
- 110dX. Han, K. Critchley, L. Zhang, S. N. Pradeep, R. J. Bushby, S. D. Evans, Langmuir 2007, 23, 1354–1358.
- 111
- 111aS. Jiang, F. Liu, A. Lerch, L. Ionov, S. Agarwal, Adv. Mater. 2015, 27, 4865–4870;
- 111bB. P. Lee, S. Konst, Adv. Mater. 2014, 26, 3415–3419;
- 111cY. Gu, N. S. Zacharia, Adv. Funct. Mater. 2015, 25, 3785–3792;
- 111dS. Maeda, Y. Hara, T. Sakai, R. Yoshida, S. Hashimoto, Adv. Mater. 2007, 19, 3480–3484;
- 111eY. Ma, Y. Zhang, B. Wu, W. Sun, Z. Li, J. Sun, Angew. Chem. Int. Ed. 2011, 50, 6254–6257; Angew. Chem. 2011, 123, 6378–6381;
- 111fM. Ma, L. Guo, D. G. Anderson, R. Langer, Science 2013, 339, 186–189.
- 112D. Balogh, M. A. Aleman-Garcia, H. B. Albada, I. Willner, Angew. Chem. Int. Ed. 2015, 54, 11652–11656; Angew. Chem. 2015, 127, 11818–11822.
- 113
- 113aB. Radt, T. A. Smith, F. Caruso, Adv. Mater. 2004, 16, 2184;
- 113bA. S. Angelatos, B. Radt, F. Caruso, J. Phys. Chem. B 2005, 109, 3071–3076;
- 113cA. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, G. B. Sukhorukov, Nano Lett. 2005, 5, 1371–1377;
- 113dA. G. Skirtach, A. M. Javier, O. Kreft, K. Kohler, A. P. Alberola, H. Möhwald, W. J. Parak, G. B. Sukhorukov, Angew. Chem. Int. Ed. 2006, 45, 4612–4617; Angew. Chem. 2006, 118, 4728–4733.
- 114S. S. Shiratori, M. F. Rubner, Macromolecules 2000, 33, 4213–4219.
- 115J. L. Lutkenhaus, K. McEnnis, P. T. Hammond, Macromolecules 2007, 40, 8367–8373.
- 116L. Hartmann, M. Bedard, H. G. Börner, H. Möhwald, G. B. Sukhorukov, M. Antonietti, Soft Matter 2008, 4, 534.
- 117T. Levy, C. Déjugnat, G. B. Sukhorukov, Adv. Funct. Mater. 2008, 18, 1586–1594.
- 118A. N. Zelikin, Q. Li, F. Caruso, Angew. Chem. Int. Ed. 2006, 45, 7743–7745; Angew. Chem. 2006, 118, 7907–7909.
- 119A. P. Johnston, L. Lee, Y. Wang, F. Caruso, Small 2009, 5, 1418–1421.
- 120
- 120aB. G. De Geest, A. G. Skirtach, A. A. Mamedov, A. A. Antipov, N. A. Kotov, S. C. De Smedt, G. B. Sukhorukov, Small 2007, 3, 804–808;
- 120bT. A. Kolesnikova, D. A. Gorin, P. Fernandes, S. Kessel, G. B. Khomutov, A. Fery, D. G. Shchukin, H. Möhwald, Adv. Funct. Mater. 2010, 20, 1189–1195.
- 121W. C. Liao, C. H. Lu, R. Hartmann, F. Wang, Y. S. Sohn, W. J. Parak, I. Willner, ACS Nano 2015, 9, 9078–9086.
- 122F. Huang, W. C. Liao, Y. S. Sohn, R. Nechushtai, C. H. Lu, I. Willner, J. Am. Chem. Soc. 2016, 138, 8936–8945.
- 123W.-C. Liao, Y. S. Sohn, M. Riutin, A. Cecconello, W. J. Parak, R. Nechushtai, I. Willner, Adv. Funct. Mater. 2016, 26, 4262–4273.
- 124W. C. Liao, M. Riutin, W. J. Parak, I. Willner, ACS Nano 2016, 10, 8683–8689.
- 125
- 125aY. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Acc. Chem. Res. 2016, 49, 483–493;
- 125bH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 125cS. L. James, Chem. Soc. Rev. 2003, 32, 276–288.
- 126
- 126aL. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248–1256;
- 126bA. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998–17999.
- 127
- 127aL. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105–1125;
- 127bB. Chen, L. Wang, F. Zapata, G. Qian, E. B. Lobkovsky, J. Am. Chem. Soc. 2008, 130, 6718–6719;
- 127cB. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui, G. Qian, Angew. Chem. Int. Ed. 2009, 48, 500–503; Angew. Chem. 2009, 121, 508–511.
- 128
- 128aJ. L. Rowsell, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4670–4679; Angew. Chem. 2005, 117, 4748–4758;
- 128bJ. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504;
- 128cJ. R. Li, J. Sculley, H. C. Zhou, Chem. Rev. 2012, 112, 869–932;
- 128dK. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724–781.
- 129P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed. 2006, 45, 5974–5978; Angew. Chem. 2006, 118, 6120–6124.
- 130J. S. Kahn, L. Freage, N. Enkin, M. A. Aleman-Garcia, I. Willner, Adv. Mater. 2017, 29, 1602782.
- 131
- 131aJ. Lee, S. M. Peng, D. Y. Yang, Y. H. Roh, H. Funabashi, N. Park, E. J. Rice, L. W. Chen, R. Long, M. M. Wu, D. Luo, Nat. Nanotechnol. 2012, 7, 816–820;
- 131bW. Guo, C. H. Lu, R. Orbach, F. Wang, X. J. Qi, A. Cecconello, D. Seliktar, I. Willner, Adv. Mater. 2015, 27, 73–78.
- 132S. H. Um, J. B. Lee, N. Park, S. Y. Kwon, C. C. Umbach, D. Luo, Nat. Mater. 2006, 5, 797–801.
- 133W. Guo, X. J. Qi, R. Orbach, C. H. Lu, L. Freage, I. Mironi-Harpaz, D. Seliktar, H. H. Yang, I. Willner, Chem. Commun. 2014, 50, 4065–4068.
- 134T. Liedl, H. Dietz, B. Yurke, F. Simmel, Small 2007, 3, 1688–1693.
- 135J. Ren, Y. Hu, C. H. Lu, W. Guo, M. A. Aleman-Garcia, F. Ricci, I. Willner, Chem. Sci. 2015, 6, 4190–4195.
- 136Y. Hu, C.-H. Lu, W. Guo, M. A. Aleman-Garcia, J. Ren, I. Willner, Adv. Funct. Mater. 2015, 25, 6867–6874.
- 137Y. Hu, W. Guo, J. S. Kahn, M. A. Aleman-Garcia, I. Willner, Angew. Chem. Int. Ed. 2016, 55, 4210–4214; Angew. Chem. 2016, 128, 4282–4286.
- 138E. Del Grosso, A. M. Dallaire, A. Vallee-Belisle, F. Ricci, Nano Lett. 2015, 15, 8407–8411.
- 139J. Conde, N. Oliva, M. Atilano, H. S. Song, N. Artzi, Nat. Mater. 2016, 15, 353–363.