Janus Membranes: Exploring Duality for Advanced Separation
Hao-Cheng Yang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
The authors contribute equally to the work.
Search for more papers by this authorDr. Jingwei Hou
UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, Australia
The authors contribute equally to the work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Vicki Chen
UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhi-Kang Xu
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
Search for more papers by this authorHao-Cheng Yang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
The authors contribute equally to the work.
Search for more papers by this authorDr. Jingwei Hou
UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, Australia
The authors contribute equally to the work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Vicki Chen
UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhi-Kang Xu
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
Search for more papers by this authorGraphical Abstract
Crossing over: Janus membranes have received widespread interest over the past years. In this Minireview, a special definition of a Janus membrane is proposed and common fabrication methods of such membranes are outlined. Also summarized are the current and potential applications of Janus membranes in directional transport, switchable permeation, and performance optimization.
Abstract
Janus membranes are an emerging class of materials having opposing properties at an interface. This structure results in selective and often novel transport characteristics. In this Minireview, a definition of the Janus membrane, beyond merely asymmetric materials, is introduced and common fabrication strategies are outlined. Also presented are current and potential applications in directional transport, switchable permeation, and performance optimization with detailed mechanisms.
References
- 1I. Cho, K.-W. Lee, J. Appl. Polym. Sci. 1985, 30, 1903–1926.
- 2P.-G. de Gennes, Angew. Chem. Int. Ed. Engl. 1992, 31, 842–845; Angew. Chem. 1992, 104, 856–859.
- 3
- 3aK.-H. Roh, D. C. Martin, J. Lahann, Nat. Mater. 2005, 4, 759–763;
- 3bA. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, E. Duguet, J. Mater. Chem. 2005, 15, 3745–3760;
- 3cA. Walther, A. H. E. Muller, Soft Matter 2008, 4, 663–668;
- 3dA. Walther, A. H. E. Müller, Chem. Rev. 2013, 113, 5194–5261;
- 3eS. Jiang, Q. Chen, M. Tripathy, E. Luijten, K. S. Schweizer, S. Granick, Adv. Mater. 2010, 22, 1060–1071.
- 4R. Erhardt, A. Böker, H. Zettl, H. Kaya, W. Pyckhout-Hintzen, G. Krausch, V. Abetz, A. H. E. Müller, Macromolecules 2001, 34, 1069–1075.
- 5
- 5aJ. Yan, K. Chaudhary, S. C. Bae, J. A. Lewis, S. Granick, Nat. Commun. 2013, 4, 1516;
- 5bM. Tripathy, K. S. Schweizer, J. Phys. Chem. B 2013, 117, 373–384.
- 6
- 6aL. Gao, K. Zhang, Y. Chen, ACS Macro Lett. 2012, 1, 1143–1145;
- 6bF. Liang, K. Shen, X. Qu, C. Zhang, Q. Wang, J. Li, J. Liu, Z. Yang, Angew. Chem. Int. Ed. 2011, 50, 2379–2382; Angew. Chem. 2011, 123, 2427–2430;
- 6cA. Walther, X. André, M. Drechsler, V. Abetz, A. H. E. Müller, J. Am. Chem. Soc. 2007, 129, 6187–6198;
- 6dZ. Zheng, C. T. Nottbohm, A. Turchanin, H. Muzik, A. Beyer, M. Heilemann, M. Sauer, A. Gölzhäuser, Angew. Chem. Int. Ed. 2010, 49, 8493–8497; Angew. Chem. 2010, 122, 8671–8675.
- 7
- 7aF. Wurm, A. F. M. Kilbinger, Angew. Chem. Int. Ed. 2009, 48, 8412–8421; Angew. Chem. 2009, 121, 8564–8574;
- 7bX. Pang, C. Wan, M. Wang, Z. Lin, Angew. Chem. Int. Ed. 2014, 53, 5524–5538; Angew. Chem. 2014, 126, 5630–5644;
- 7cJ. Du, R. K. O'Reilly, Chem. Soc. Rev. 2011, 40, 2402–2416.
- 8
- 8aS. Fujii, M. Kappl, H.-J. Butt, T. Sugimoto, Y. Nakamura, Angew. Chem. Int. Ed. 2012, 51, 9809–9813; Angew. Chem. 2012, 124, 9947–9951;
- 8bQ. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, L. Jiang, Soft Matter 2011, 7, 5948–5951;
- 8cJ.-T. Zhang, X. Chao, S. A. Asher, J. Am. Chem. Soc. 2013, 135, 11397–11401;
- 8dH.-C. Yang, W. Xu, Y. Du, J. Wu, Z.-K. Xu, RSC Adv. 2014, 4, 45415–45418.
- 9Z. Wang, Y. Wang, G. Liu, Angew. Chem. Int. Ed. 2016, 55, 1291–1294; Angew. Chem. 2016, 128, 1313–1316.
- 10Z. Zhang, X.-Y. Kong, K. Xiao, G. Xie, Q. Liu, Y. Tian, H. Zhang, J. Ma, L. Wen, L. Jiang, Adv. Mater. 2016, 28, 144–150.
- 11J. Hou, C. Ji, G. Dong, B. Xiao, Y. Ye, V. Chen, J. Mater. Chem. A 2015, 3, 17032–17041.
- 12J. Wu, N. Wang, L. Wang, H. Dong, Y. Zhao, L. Jiang, Soft Matter 2012, 8, 5996–5999.
- 13L. Hu, S. Gao, Y. Zhu, F. Zhang, L. Jiang, J. Jin, J. Mater. Chem. A 2015, 3, 23477–23482.
- 14J. Zhang, Y. Yang, Z. Zhang, P. Wang, X. Wang, Adv. Mater. 2014, 26, 1071–1075.
- 15Y. Zhang, M. Barboiu, Chem.Commun. 2015, 51, 15925–15927.
- 16M. Essalhi, M. Khayet, J. Membr. Sci. 2012, 417, 163–173.
- 17S. Bonyadi, T. S. Chung, J. Membr. Sci. 2007, 306, 134–146.
- 18H. Wang, H. Zhou, W. Yang, Y. Zhao, J. Fang, T. Lin, ACS Appl. Mater. Interfaces 2015, 7, 22874–22880.
- 19
- 19aJ. Chen, Y. Liu, D. Guo, M. Cao, L. Jiang, Chem. Commun. 2015, 51, 11872–11875;
- 19bH. Wang, J. Ding, L. Dai, X. Wang, T. Lin, J. Mater. Chem. 2010, 20, 7938–7940.
- 20X. Tian, H. Jin, J. Sainio, R. H. A. Ras, O. Ikkala, Adv. Funct. Mater. 2014, 24, 6023–6028.
- 21L. Wang, G. H. Xi, S. J. Wan, C. H. Zhao, X. D. Liu, Cellulose 2014, 21, 2983–2994.
- 22Y. Liu, J. H. Xin, C.-H. Choi, Langmuir 2012, 28, 17426–17434.
- 23H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318, 426–430.
- 24H.-C. Yang, J. Hou, L.-S. Wan, V. Chen, Z.-K. Xu, Adv. Mater. Interfaces 2016, 3, 1500774.
- 25H.-C. Yang, K.-J. Liao, H. Huang, Q.-Y. Wu, L.-S. Wan, Z.-K. Xu, J. Mater. Chem. A 2014, 2, 10225–10230.
- 26
- 26aD. Han, P. Xiao, J. Gu, J. Chen, Z. Cai, J. Zhang, W. Wang, T. Chen, RSC Adv. 2014, 4, 22759–22762;
- 26bJ. Gu, P. Xiao, J. Chen, J. Zhang, Y. Huang, T. Chen, ACS Appl. Mater. Interfaces 2014, 6, 16204–16209.
- 27B. L. de Groot, H. Grubmüller, Science 2001, 294, 2353–2357.
- 28M. Khayet, T. Matsuura, J. I. Mengual, M. Qtaishat, Desalination 2006, 192, 105–111.
- 29A. R. Parker, C. R. Lawrence, Nature 2001, 414, 33–34.
- 30Q. Chen, L. Meng, Q. Li, D. Wang, W. Guo, Z. Shuai, L. Jiang, Small 2011, 7, 2225–2231.
- 31
- 31aT. Guo, K. Han, L. Heng, M. Cao, L. Jiang, RSC Adv. 2015, 5, 88471–88476;
- 31bH. Zhou, H. Wang, H. Niu, T. Lin, Sci. Rep. 2013, 3, 2964;
- 31cH. Wang, H. Zhou, H. Niu, J. Zhang, Y. Du, T. Lin, Adv. Mater. Interfaces 2015, 2, 1400506.
- 32X. Tian, J. Li, X. Wang, Soft Matter 2012, 8, 2633–2637.
- 33
- 33aM. Liu, S. Wang, Z. Wei, Y. Song, L. Jiang, Adv. Mater. 2009, 21, 665–669;
- 33bZ. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, L. Jiang, Adv. Mater. 2011, 23, 4270–4273.
- 34X. Hou, Y. Liu, H. Dong, F. Yang, L. Li, L. Jiang, Adv. Mater. 2010, 22, 2440–2443.
- 35
- 35aY. Li, H. Zhang, T. Xu, Z. Lu, X. Wu, P. Wan, X. Sun, L. Jiang, Adv. Funct. Mater. 2015, 25, 1737–1744;
- 35bZ. Lu, W. Zhu, X. Yu, H. Zhang, Y. Li, X. Sun, X. Wang, H. Wang, J. Wang, J. Luo, X. Lei, L. Jiang, Adv. Mater. 2014, 26, 2683–2687;
- 35cZ. Lu, Y. Li, X. Lei, J. Liu, X. Sun, Mater. Horiz. 2015, 2, 294–298.
- 36Y. Lei, R. Sun, X. Zhang, X. Feng, L. Jiang, Adv. Mater. 2015, 1477–1481.
- 37J. A. Prince, D. Rana, T. Matsuura, N. Ayyanar, T. S. Shanmugasundaram, G. Singh, Sci. Rep. 2014, 4, 6949.
- 38
- 38aH. Zhu, Z. Guo, W. Liu, Chem. Commun. 2016, 52, 3863–3879;
- 38bA. Lee, M.-W. Moon, H. Lim, W.-D. Kim, H.-Y. Kim, Langmuir 2012, 28, 10183–10191;
- 38cK.-C. Park, S. S. Chhatre, S. Srinivasan, R. E. Cohen, G. H. McKinley, Langmuir 2013, 29, 13269–13277;
- 38dH. Bai, J. Ju, R. Su, Y. Chen, Y. Zheng, L. Jiang, Adv. Mater. 2011, 23, 3708–3711;
- 38eJ. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang, L. Jiang, Nat. Commun. 2012, 3, 1247;
- 38fJ. Ju, K. Xiao, X. Yao, H. Bai, L. Jiang, Adv. Mater. 2013, 25, 5937–5942.
- 39M. Cao, J. Xiao, C. Yu, K. Li, L. Jiang, Small 2015, 11, 4379–4384.
- 40R. P. Garrod, L. G. Harris, W. C. E. Schofield, J. McGettrick, L. J. Ward, D. O. H. Teare, J. P. S. Badyal, Langmuir 2007, 23, 689–693.
- 41
- 41aY. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, T. Deng, Adv. Mater. 2015, 27, 2768–2774;
- 41bZ. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, T. Deng, Small 2014, 10, 3233;
- 41cY. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, M. Chen, Adv. Mater. 2015, 27, 4302–4307.
- 42H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Nat. Commun. 2014, 5, 4449.
- 43L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Adv. Mater. 2015, 27, 4889–4894.
- 44K. Nakoa, K. Rahaoui, A. Date, A. Akbarzadeh, Sol. Energy 2015, 119, 319–331.
- 45H. Zhang, X. Hou, L. Zeng, F. Yang, L. Li, D. Yan, Y. Tian, L. Jiang, J. Am. Chem. Soc. 2013, 135, 16102–16110.
- 46Z. Zhang, X.-Y. Kong, K. Xiao, Q. Liu, G. Xie, P. Li, J. Ma, Y. Tian, L. Wen, L. Jiang, J. Am. Chem. Soc. 2015, 137, 14765–14772.
- 47M. Cao, K. Li, Z. Dong, C. Yu, S. Yang, C. Song, K. Liu, L. Jiang, Adv. Funct. Mater. 2015, 25, 4114–4119.
- 48C. Gao, Z. Sun, K. Li, Y. Chen, Y. Cao, S. Zhang, L. Feng, Energy Environ. Sci. 2013, 6, 1147–1151.