Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes
Dr. Gongping Liu
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (former Nanjing University of Technology), 5 Xinmofan Road, Nanjing, 210009 China
Search for more papers by this authorCorresponding Author
Prof. Wanqin Jin
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (former Nanjing University of Technology), 5 Xinmofan Road, Nanjing, 210009 China
Search for more papers by this authorProf. Nanping Xu
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (former Nanjing University of Technology), 5 Xinmofan Road, Nanjing, 210009 China
Search for more papers by this authorDr. Gongping Liu
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (former Nanjing University of Technology), 5 Xinmofan Road, Nanjing, 210009 China
Search for more papers by this authorCorresponding Author
Prof. Wanqin Jin
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (former Nanjing University of Technology), 5 Xinmofan Road, Nanjing, 210009 China
Search for more papers by this authorProf. Nanping Xu
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (former Nanjing University of Technology), 5 Xinmofan Road, Nanjing, 210009 China
Search for more papers by this authorGraphical Abstract
Abstract
Two-dimensional (2D) materials of atomic thickness have emerged as nano-building blocks to develop high-performance separation membranes that feature unique nanopores and/or nanochannels. These 2D-material membranes exhibit extraordinary permeation properties, opening a new avenue to ultra-fast and highly selective membranes for water and gas separation. Summarized in this Minireview are the latest ground-breaking studies in 2D-material membranes as nanosheet and laminar membranes, with a focus on starting materials, nanostructures, and transport properties. Challenges and future directions of 2D-material membranes for wide implementation are discussed briefly.
References
- 1A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183–191.
- 2D. Li, R. B. Kaner, Science 2008, 320, 1170–1171.
- 3A. K. Geim, I. V. Grigorieva, Nature 2013, 499, 419–425.
- 4B. Dubertret, T. Heine, M. Terrones, Acc. Chem. Res. 2015, 48, 1–2.
- 5M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 2013, 113, 3766–3798.
- 6G. Liu, W. Jin, N. Xu, Chem. Soc. Rev. 2015, 44, 5016–5030.
- 7L. Huang, M. Zhang, C. Li, G. Shi, J. Phys. Chem. Lett. 2015, 6, 2806–2815.
- 8H. Huang, Y. Ying, X. Peng, J. Mater. Chem. A 2014, 2, 13772–13782.
- 9F. Perreault, A. Fonseca de Faria, M. Elimelech, Chem. Soc. Rev. 2015, 44, 5861–5896.
- 10K. A. Mahmoud, B. Mansoor, A. Mansour, M. Khraisheh, Desalination 2015, 356, 208–225.
- 11P. S. Goh, A. F. Ismail, Desalination 2015, 356, 115–128.
- 12B. Mi, Science 2014, 343, 740–742.
- 13Y. Li, W. Yang, Chin. J. Catal. 2015, 36, 692–697.
- 14M. Tsapatsis, AIChE J. 2014, 60, 2374–2381.
- 15D. L. Gin, R. D. Noble, Science 2011, 332, 674–676.
- 16H.-K. Jeong, S. Nair, T. Vogt, L. C. Dickinson, M. Tsapatsis, Nat. Mater. 2003, 2, 53–58.
- 17T. C. T. Pham, T. H. Nguyen, K. B. Yoon, Angew. Chem. Int. Ed. 2013, 52, 8693–8698; Angew. Chem. 2013, 125, 8855–8860.
- 18K. Varoon, X. Zhang, B. Elyassi, D. D. Brewer, M. Gettel, S. Kumar, J. A. Lee, S. Maheshwari, A. Mittal, C.-Y. Sung, M. Cococcioni, L. F. Francis, A. V. McCormick, K. A. Mkhoyan, M. Tsapatsis, Science 2011, 334, 72–75.
- 19K. V. Agrawal, B. Topuz, Z. Jiang, K. Nguenkam, B. Elyassi, L. F. Francis, M. Tsapatsis, M. Navarro, AIChE J. 2013, 59, 3458–3467.
- 20K. V. Agrawal, B. Topuz, T. C. T. Pham, T. H. Nguyen, N. Sauer, N. Rangnekar, H. Zhang, K. Narasimharao, S. N. Basahel, L. F. Francis, C. W. Macosko, S. Al-Thabaiti, M. Tsapatsis, K. B. Yoon, Adv. Mater. 2015, 27, 3243–3249.
- 21H.-K. Jeong, W. Krych, H. Ramanan, S. Nair, E. Marand, M. Tsapatsis, Chem. Mater. 2004, 16, 3838–3845.
- 22N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Chem. Soc. Rev. 2015, 44, 7128–7154.
- 23A. K. Cheetham, C. N. R. Rao, R. K. Feller, Chem. Commun. 2006, 4780–4795.
- 24Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science 2014, 346, 1356–1359.
- 25T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. Llabrés i Xamena, J. Gascon, Nat. Mater. 2015, 14, 48–55.
- 26K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669.
- 27J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, P. L. McEuen, Nano Lett. 2008, 8, 2458–2462.
- 28V. Berry, Carbon 2013, 62, 1–10.
- 29D. Cohen-Tanugi, J. C. Grossman, Nano Lett. 2012, 12, 3602–3608.
- 30M. E. Suk, N. R. Aluru, J. Phys. Chem. Lett. 2010, 1, 1590–1594.
- 31K. Sint, B. Wang, P. Král, J. Am. Chem. Soc. 2008, 130, 16448–16449.
- 32D.-E. Jiang, V. R. Cooper, S. Dai, Nano Lett. 2009, 9, 4019–4024.
- 33M. D. Fischbein, M. Drndić, Appl. Phys. Lett. 2008, 93, 113107.
- 34K. Celebi, J. Buchheim, R. M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J.-I. Kye, C. Lee, H. G. Park, Science 2014, 344, 289–292.
- 35S. P. Koenig, L. Wang, J. Pellegrino, J. S. Bunch, Nat. Nanotechnol. 2012, 7, 728–732.
- 36S. C. O'Hern, M. S. H. Boutilier, J.-C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, R. Karnik, Nano Lett. 2014, 14, 1234–1241.
- 37S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, S. M. Mahurin, Nat. Nanotechnol. 2015, 10, 459–464.
- 38S. C. O'Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, R. Karnik, Nano Lett. 2015, 15, 3254–3260.
- 39S. Hu, M. Lozada-Hidalgo, F. C. Wang, A. Mishchenko, F. Schedin, R. R. Nair, E. W. Hill, D. W. Boukhvalov, M. I. Katsnelson, R. A. W. Dryfe, I. V. Grigorieva, H. A. Wu, A. K. Geim, Nature 2014, 516, 227–230.
- 40M. Lozada-Hidalgo, S. Hu, O. Marshall, A. Mishchenko, A. N. Grigorenko, R. A. W. Dryfe, B. Radha, I. V. Grigorieva, A. K. Geim, Science 2016, 351, 68–70.
- 41R. N. Karnik, Nature 2014, 516, 173–175.
- 42M. Heiranian, A. B. Farimani, N. R. Aluru, Nat. Commun. 2015, 6, 8616.
- 43Z. Tian, S. Dai, D.-E. Jiang, ACS Appl. Mater. Interfaces 2015, 7, 13073–13079.
- 44J. W. Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453–465.
- 45D. Anselmetti, A. Gölzhäuser, Angew. Chem. Int. Ed. 2014, 53, 12300–12302; Angew. Chem. 2014, 126, 12498–12500.
- 46G. Decher, Science 1997, 277, 1232–1237.
- 47S. Schrettl, C. Stefaniu, C. Schwieger, G. Pasche, E. Oveisi, Y. Fontana, A. F.i. Morral, J. Reguera, R. Petraglia, C. Corminboeuf, G. Brezesinski, H. Frauenrath, Nat. Chem. 2014, 6, 468–476.
- 48D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228–240.
- 49K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, W. Jin, Angew. Chem. Int. Ed. 2014, 53, 6929–6932; Angew. Chem. 2014, 126, 7049–7052.
- 50R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, R. R. Nair, Science 2014, 343, 752–754.
- 51H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, X. Peng, Nat. Commun. 2013, 4, 2979.
- 52Y. Han, Z. Xu, C. Gao, Adv. Funct. Mater. 2013, 23, 3693–3700.
- 53H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao, M. Yu, Science 2013, 342, 95–98.
- 54P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, H. Zhu, ACS Nano 2013, 7, 428–437.
- 55H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, H. B. Park, Science 2013, 342, 91–95.
- 56R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, A. K. Geim, Science 2012, 335, 442–444.
- 57M. Hu, B. Mi, Environ. Sci. Technol. 2013, 47, 3715–3723.
- 58Y. Lou, G. Liu, S. Liu, J. Shen, W. Jin, Appl. Surf. Sci. 2014, 307, 631–637.
- 59L. Qiu, X. Zhang, W. Yang, Y. Wang, G. P. Simon, D. Li, Chem. Commun. 2011, 47, 5810–5812.
- 60L. Huang, Y. Li, Q. Zhou, W. Yuan, G. Shi, Adv. Mater. 2015, 27, 3797–3802.
- 61Y. Su, V. G. Kravets, S. L. Wong, J. Waters, A. K. Geim, R. R. Nair, Nat. Commun. 2014, 5, 4843.
- 62W. Wang, E. Eftekhari, G. Zhu, X. Zhang, Z. Yan, Q. Li, Chem. Commun. 2014, 50, 13089–13092.
- 63S. J. Gao, H. Qin, P. Liu, J. Jin, J. Mater. Chem. A 2015, 3, 6649–6654.
- 64Y. Han, Y. Jiang, C. Gao, ACS Appl. Mater. Interfaces 2015, 7, 8147–8155.
- 65W.-S. Hung, C.-H. Tsou, M. De Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Chem. Mater. 2014, 26, 2983–2990.
- 66J. Shen, G. Liu, K. Huang, Z. Chu, W. Jin, N. Xu, ACS Nano 2016, 10, 3398—3409.
- 67K. Huang, G. Liu, J. Shen, Z. Chu, H. Zhou, X. Gu, W. Jin, N. Xu, Adv. Funct. Mater. 2015, 25, 5809–5815.
- 68G. Liu, W. Wei, W. Jin, ACS Sustainable Chem. Eng. 2014, 2, 546–560.
- 69Y. Ying, L. Sun, Q. Wang, Z. Fan, X. Peng, RSC Adv. 2014, 4, 21425–21428.
- 70L. Sun, Y. Ying, H. Huang, Z. Song, Y. Mao, Z. Xu, X. Peng, ACS Nano 2014, 8, 6304–6311.
- 71P. Sun, F. Zheng, M. Zhu, Z. Song, K. Wang, M. Zhong, D. Wu, R. B. Little, Z. Xu, H. Zhu, ACS Nano 2014, 8, 850–859.
- 72N. F. D. Aba, J. Y. Chong, B. Wang, C. Mattevi, K. Li, J. Membr. Sci. 2015, 484, 87–94.
- 73J. Y. Chong, N. F. D. Aba, B. Wang, C. Mattevi, K. Li, Sci. Rep. 2015, 5, 15799.
- 74K. Goh, L. Setiawan, L. Wei, R. Si, A. G. Fane, R. Wang, Y. Chen, J. Membr. Sci. 2015, 474, 244–253.
- 75L. Sun, H. Huang, X. Peng, Chem. Commun. 2013, 49, 10718–10720.
- 76D. Wang, Z. Wang, L. Wang, L. Hu, J. Jin, Nanoscale 2015, 7, 17649–17652.
- 77C. E. Ren, K. B. Hatzell, M. Alhabeb, Z. Ling, K. A. Mahmoud, Y. Gogotsi, J. Phys. Chem. Lett. 2015, 6, 4026–4031.
- 78Y. Liu, N. Wang, Z. Cao, J. Caro, J. Mater. Chem. A 2014, 2, 1235–1238.
- 79M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248–4253.
- 80M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater. 2014, 26, 992–1005.
- 81Q. Wang, D. O'Hare, Chem. Rev. 2012, 112, 4124–4155.
- 82Y. Liu, N. Wang, J. Caro, J. Mater. Chem. A 2014, 2, 5716–5723.
- 83T.-S. Chung, L. Y. Jiang, Y. Li, S. Kulprathipanja, Prog. Polym. Sci. 2007, 32, 483–507.
- 84F. Perreault, A. F. de Faria, S. Nejati, M. Elimelech, ACS Nano 2015, 9, 7226–7236.
- 85J. Shen, G. Liu, K. Huang, W. Jin, K.-R. Lee, N. Xu, Angew. Chem. Int. Ed. 2015, 54, 578–582; Angew. Chem. 2015, 127, 588–592.
- 86K. Cao, Z. Jiang, X. Zhang, Y. Zhang, J. Zhao, R. Xing, S. Yang, C. Gao, F. Pan, J. Membr. Sci. 2015, 490, 72–83.
- 87Y. Hu, J. Wei, Y. Liang, H. Zhang, X. Zhang, W. Shen, H. Wang, Angew. Chem. Int. Ed. 2016, 55, 2048–2052.
- 88Y. Wang, R. Ou, H. Wang, T. Xu, J. Membr. Sci. 2015, 475, 281–289.
- 89A. Huang, Q. Liu, N. Wang, Y. Zhu, J. Caro, J. Am. Chem. Soc. 2014, 136, 14686–14689.
- 90Y. Liu, J. H. Pan, N. Wang, F. Steinbach, X. Liu, J. Caro, Angew. Chem. Int. Ed. 2015, 54, 3028–3032; Angew. Chem. 2015, 127, 3071–3075.