A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts
M. Sc. Pavlo Kos
Organometallic Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 12, 64287 Darmstadt (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Herbert Plenio
Organometallic Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 12, 64287 Darmstadt (Germany)
Organometallic Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 12, 64287 Darmstadt (Germany)Search for more papers by this authorM. Sc. Pavlo Kos
Organometallic Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 12, 64287 Darmstadt (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Herbert Plenio
Organometallic Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 12, 64287 Darmstadt (Germany)
Organometallic Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 12, 64287 Darmstadt (Germany)Search for more papers by this authorGraphical Abstract
Abstract
A Crabtree-type IrI complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent IrI complex (Φ=0.038) into a highly fluorescent IrIII species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201506918_sm_miscellaneous_information.pdf4.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Z. Zhang, Y. Li, J. Li, Hydrogen Generation, Storage and Utilization, Wiley, New York, 2014.
10.1002/9781118875193 Google Scholar
- 2C. H. S. Hitchcock, J. Sci. Food Agric. 2000, 80, 131–136.
10.1002/(SICI)1097-0010(20000101)80:1<131::AID-JSFA500>3.0.CO;2-4 CAS Web of Science® Google Scholar
- 3J. R. Wilkins, G. E. Stoner, E. H. Boykin, Appl. Microbiol. 1974, 27, 949–952.
- 4E. U. Hurme, JFP 1998, 61, 1165–1169.
- 5W. Shin, Anal. Bioanal. Chem. 2014, 406, 3931–3939.
- 6C. Schwarz, Z. Poss, D. Hoffmann, J. Appel, Adv. Exp. Med. Biol. 2010, 675, 305–348.
- 7T. Hübert, L. Boon-Brett, G. Black, U. Banach, Sens. Actuators B 2011, 157, 329–352.
- 8
- 8aC. Wadell, S. Syrenova, C. Langhammer, ACS Nano 2014, 8, 11925–11940;
- 8bM. Ando, TrAC Trends Anal. Chem. 2006, 25, 937–948.
- 9T. Ueno, T. Nagano, Nat. Methods 2011, 8, 642–645.
- 10
- 10aS. H. Heinemann, T. Hoshi, M. Westerhausen, A. Schiller, Chem. Commun. 2014, 50, 3644–3660;
- 10bL. Yuan, W. Lin, L. Tan, K. Zheng, W. Huang, Angew. Chem. Int. Ed. 2013, 52, 1628–1630; Angew. Chem. 2013, 125, 1670–1672;
- 10cM. E. Moragues, A. Toscani, F. Sancenón, R. Martínez-Máñez, A. J. P. White, J. D. E. T. Wilton-Ely, J. Am. Chem. Soc. 2014, 136, 11930–11933.
- 11Y. Liu, Y. Tang, N. N. Barashkov, I. S. Irgibaeva, J. W. Y. Lam, R. Hu, D. Birimzhanova, Y. Yu, B. Z. Tang, J. Am. Chem. Soc. 2010, 132, 13951–13953.
- 12
- 12aT. Ozdemir, F. Sozmen, S. Mamur, T. Tekinay, E. U. Akkaya, Chem. Commun. 2014, 50, 5455–5457;
- 12bS. Singha, D. Kim, H. Moon, T. Wang, K. H. Kim, Y. H. Shin, J. Jung, E. Seo, S.-J. Lee, K. H. Ahn, Anal. Chem. 2015, 87, 1188–1195.
- 13M. H. Lim, S. J. Lippard, Acc. Chem. Res. 2007, 40, 41–51.
- 14L. A. Juárez, A. M. Costero, M. Parra, S. Gil, F. Sancenón, R. Martinez-Máñez, Chem. Commun. 2015, 51, 1725–1727.
- 15B. Esser, T. M. Swager, Angew. Chem. Int. Ed. 2010, 49, 8872–8875; Angew. Chem. 2010, 122, 9056–9059.
- 16X. Zhou, S. Lee, Z. Xu, J. Yoon, Chem. Rev. 2015, 115, 7944–8000.
- 17P. Kos, H. Plenio, Chem. Eur. J. 2015, 21, 1088–1095.
- 18F. Barrios-Landeros, B. P. Carrow, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 8141–8154.
- 19J. F. Hartwig, Organotransition Metal Chemistry, University Science Books, Sausalito, 2010.
- 20R. Crabtree, Acc. Chem. Res. 1979, 12, 331–337.
- 21
- 21aS. J. Roseblade, A. Pfaltz, Acc. Chem. Res. 2007, 40, 1402–1411;
- 21bX. Cui, K. Burgess, Chem. Rev. 2005, 105, 3272–3296;
- 21cJ. J. Verendel, O. Pàmies, M. Diéguez, P. G. Andersson, Chem. Rev. 2014, 114, 2130–2169.
- 22This statement should be taken with care, since the oxidation number of a metal is just a formal description of its bonding situation and not necessarily correlated with the real electron density at the metal.
- 23
- 23aG. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184–1201; Angew. Chem. 2008, 120, 1202–1219;
- 23bA. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891–4932.
- 24 N-Heterocyclic Carbenes (Ed.: ), Wiley-VCH, Weinheim, 2014.
- 25M. Schilz, H. Plenio, J. Org. Chem. 2012, 77, 2798–2807.
- 26
- 26aR. Savka, Synlett 2013, 1735–1736;
- 26bG. W. Nyce, S. Csihony, R. M. Waymouth, J. L. Hedrick, Chem. Eur. J. 2004, 10, 4073–4079.
- 27S. Leuthäußer, D. Schwarz, H. Plenio, Chem. Eur. J. 2007, 13, 7195–7203.
- 28H. Qi, J. J. Teesdale, R. C. Pupillo, J. Rosenthal, A. J. Bard, J. Am. Chem. Soc. 2013, 135, 13558–13566.
- 29
- 29aM. J. Cowley, R. W. Adams, K. D. Atkinson, M. C. R. Cockett, S. B. Duckett, G. G. R. Green, J. A. B. Lohman, R. Kerssebaum, D. Kilgour, R. E. Mewis, J. Am. Chem. Soc. 2011, 133, 6134–6137;
- 29bL. S. Lloyd, A. Asghar, M. J. Burns, A. Charlton, S. Coombes, M. J. Cowley, G. J. Dear, S. B. Duckett, G. R. Genov, G. G. R. Green, L. A. R. Highton, A. J. J. Hooper, M. Khan, I. G. Khazal, R. J. Lewis, R. E. Mewis, A. D. Roberts, A. J. Ruddlesden, Catal. Sci. Technol. 2014, 4, 3544–3554.
- 30The electron-deficient cationic Ir complex is also able to coordinate CO, and at 1000 ppm CO a complex is observed with fluorescence comparable to that of the hydride complex.
- 31S. P. Smidt, N. Zimmermann, M. Studer, A. Pfaltz, Chem. Eur. J. 2004, 10, 4685–4693.
- 32
- 32aD. F. Chodosh, R. H. Crabtree, H. Felkin, S. Morehouse, G. E. Morris, Inorg. Chem. 1982, 21, 1307–1311;
- 32bS. P. Smidt, A. Pfaltz, E. Martínez-Viviente, P. S. Pregosin, A. Albinati, Organometallics 2003, 22, 1000–1009.
- 33Y. Xu, M. A. Celik, A. L. Thompson, H. Cai, M. Yurtsever, B. Odell, J. C. Green, D. M. P. Mingos, J. M. Brown, Angew. Chem. Int. Ed. 2009, 48, 582–585; Angew. Chem. 2009, 121, 590–593.
- 34Since the rate of the hydrogen flow through the solution is slightly variable in the different experiments, the slope of the fluorescence–time plots differs slightly.
- 35
- 35aR. H. Crabtree, P. C. Demou, D. Eden, J. M. Mihelcic, C. A. Parnell, J. M. Quirk, G. E. Morris, J. Am. Chem. Soc. 1982, 104, 6994–7001;
- 35bL. D. Vazquez-Serrano, B. T. Owens, J. M. Buriak, Inorg. Chim. Acta 2006, 359, 2786–2797.
- 36In a separate experiment at 0.1 mol % catalyst loading, the full conversion of the substrate requires about 10 min, while the final level of fluorescence is reached within approximately 4 min.