Locating Gases in Porous Materials: Cryogenic Loading of Fuel-Related Gases Into a Sc-based Metal–Organic Framework under Extreme Pressures
Jorge Sotelo
EaStChem School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster road, Joseph Black Building, Edinburgh EH9 3FJ (UK)
Search for more papers by this authorDr. Christopher H. Woodall
School of Engineering and Centre for Science at Extreme Conditions, University of Edinburgh, Peter Gurthrie Tait Road, Erskine Williamson Building, Edinburgh EH9 3FD (UK)
Search for more papers by this authorDr. Dave R. Allan
Diamond Light Source, Harwell Campus, Didcot, OX11 ODE (UK)
Search for more papers by this authorEugene Gregoryanz
School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Peter Gurthrie Tait Road, Erskine Williamson Building, Edinburgh EH9 3FD (UK)
Search for more papers by this authorDr. Ross T. Howie
School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Peter Gurthrie Tait Road, Erskine Williamson Building, Edinburgh EH9 3FD (UK)
Search for more papers by this authorKonstantin V. Kamenev
School of Engineering and Centre for Science at Extreme Conditions, University of Edinburgh, Peter Gurthrie Tait Road, Erskine Williamson Building, Edinburgh EH9 3FD (UK)
Search for more papers by this authorDr. Michael R. Probert
School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU (UK)
Search for more papers by this authorProf. Paul A. Wright
EaStCHEM School of Chemistry, Purdie Building, University of St. Andrews, St. Andrews KY16 9ST (UK)
Search for more papers by this authorCorresponding Author
Dr. Stephen A. Moggach
EaStChem School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster road, Joseph Black Building, Edinburgh EH9 3FJ (UK)
EaStChem School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster road, Joseph Black Building, Edinburgh EH9 3FJ (UK)Search for more papers by this authorJorge Sotelo
EaStChem School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster road, Joseph Black Building, Edinburgh EH9 3FJ (UK)
Search for more papers by this authorDr. Christopher H. Woodall
School of Engineering and Centre for Science at Extreme Conditions, University of Edinburgh, Peter Gurthrie Tait Road, Erskine Williamson Building, Edinburgh EH9 3FD (UK)
Search for more papers by this authorDr. Dave R. Allan
Diamond Light Source, Harwell Campus, Didcot, OX11 ODE (UK)
Search for more papers by this authorEugene Gregoryanz
School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Peter Gurthrie Tait Road, Erskine Williamson Building, Edinburgh EH9 3FD (UK)
Search for more papers by this authorDr. Ross T. Howie
School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Peter Gurthrie Tait Road, Erskine Williamson Building, Edinburgh EH9 3FD (UK)
Search for more papers by this authorKonstantin V. Kamenev
School of Engineering and Centre for Science at Extreme Conditions, University of Edinburgh, Peter Gurthrie Tait Road, Erskine Williamson Building, Edinburgh EH9 3FD (UK)
Search for more papers by this authorDr. Michael R. Probert
School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU (UK)
Search for more papers by this authorProf. Paul A. Wright
EaStCHEM School of Chemistry, Purdie Building, University of St. Andrews, St. Andrews KY16 9ST (UK)
Search for more papers by this authorCorresponding Author
Dr. Stephen A. Moggach
EaStChem School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster road, Joseph Black Building, Edinburgh EH9 3FJ (UK)
EaStChem School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster road, Joseph Black Building, Edinburgh EH9 3FJ (UK)Search for more papers by this authorGraphical Abstract
The maximum gas uptake of porous MOFs was explored by using gases as pressure-transmitting media in high-pressure single-crystal diffraction experiments. A study with supercritical CH4 at 3–25 kbar demonstrates that two high-pressure phase transitions are induced as the filled MOF adapts to reduce the volume of the system.
Abstract
An alternative approach to loading metal organic frameworks with gas molecules at high (kbar) pressures is reported. The technique, which uses liquefied gases as pressure transmitting media within a diamond anvil cell along with a single-crystal of a porous metal–organic framework, is demonstrated to have considerable advantages over other gas-loading methods when investigating host–guest interactions. Specifically, loading the metal–organic framework Sc2BDC3 with liquefied CO2 at 2 kbar reveals the presence of three adsorption sites, one previously unreported, and resolves previous inconsistencies between structural data and adsorption isotherms. A further study with supercritical CH4 at 3–25 kbar demonstrates hyperfilling of the Sc2BDC3 and two high-pressure displacive and reversible phase transitions are induced as the filled MOF adapts to reduce the volume of the system.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201506250_sm_miscellaneous_information.pdf609.7 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724–781;
- 1bJ. R. Li, J. Sculley, H. C. Zhou, Chem. Rev. 2012, 112, 869–932.
- 2A. Greenaway, B. Gonzalez-Santiago, P. M. Donaldson, M. D. Frogley, G. Cinque, J. Sotelo, S. Moggach, E. Shiko, S. Brandani, R. F. Howe, P. A. Wright, Angew. Chem. Int. Ed. 2014, 53, 13483–13487; Angew. Chem. 2014, 126, 13701–13705.
- 3H. C. Hoffmann, M. Debowski, P. Muller, S. Paasch, I. Senkovska, S. Kaskel, E. Brunner, Materials 2012, 5, 2537–2572.
- 4E. J. Carrington, I. J. Vitorica-Yrezabal, L. Brammer, Acta Crystallogr. Sect. B 2014, 70, 404–422.
- 5
- 5aC. Serre, C. Mellot-Draznieks, S. Surble, N. Audebrand, Y. Filinchuk, G. Ferey, Science 2007, 315, 1828–1831;
- 5bT. Jacobs, G. O. Lloyd, J.-A. Gertenbach, K. K. Müller-Nedebock, C. Esterhuysen, L. J. Barbour, Angew. Chem. Int. Ed. 2012, 51, 4913–4916; Angew. Chem. 2012, 124, 4997–5000.
- 6
- 6aS. Takamizawa, E.-i. Nakata, T. Saito, K. Kojima, CrystEngComm 2003, 5, 411–413;
- 6bY.-Q. Tian, Y.-M. Zhao, H.-J. Xu, C.-Y. Chi, Inorg. Chem. 2007, 46, 1612–1616;
- 6cJ. P. Zhang, X. M. Chen, J. Am. Chem. Soc. 2009, 131, 5516–5521;
- 6dS. Takamizawa, Y. Takasaki, R. Miyake, Chem. Commun. 2009, 6625–6627;
- 6eR. Vaidhyanathan, S. S. Iremonger, G. K. H. Shimizu, P. G. Boyd, S. Alavi, T. K. Woo, Science 2010, 330, 650–653;
- 6fM. Wriedt, J. P. Sculley, A. A. Yakovenko, Y. Ma, G. J. Halder, P. B. Balbuena, H.-C. Zhou, Angew. Chem. Int. Ed. 2012, 51, 9804–9808; Angew. Chem. 2012, 124, 9942–9946;
- 6gS. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna, B. Chen, Nat. Commun. 2012, 3, 954;
- 6hS. Couck, E. Gobechiya, C. E. Kirschhock, P. Serra-Crespo, J. Juan-Alcaniz, A. Martinez Joaristi, E. Stavitski, J. Gascon, F. Kapteijn, G. V. Baron, J. F. Denayer, ChemSusChem 2012, 5, 740–750;
- 6iW. Kosaka, K. Yamagishi, A. Hori, H. Sato, R. Matsuda, S. Kitagawa, M. Takata, H. Miyasaka, J. Am. Chem. Soc. 2013, 135, 18469–18480;
- 6jP. Zhao, G. I. Lampronti, G. O. Lloyd, M. T. Wharmby, S. Facq, A. K. Cheetham, S. A. Redfern, Chem. Mater. 2014, 26, 1767–1769;
- 6kW. L. Queen, M. R. Hudson, E. D. Bloch, J. A. Mason, M. I. Gonzalez, J. S. Lee, D. Gygi, J. D. Howe, K. Lee, T. A. Darwish, M. James, V. K. Peterson, S. J. Teat, B. Smit, J. B. Neaton, J. R. Long, C. M. Brown, Chem. Sci. 2014, 5, 4569–4581.
- 7
- 7aM. Eremets, High Pressure Experimental Methods, Oxford Science Publications, 1996;
10.1093/oso/9780198562696.001.0001 Google Scholar
- 7bS. Klotz, J. Chervin, P. Munsch, G. Le Marchand, J. Phys. D 2009, 42, 075413.
- 8J. Matson in Scientific American, Nature Publishing Group, 2011.
- 9N. Pantha, N. P. Adhikari, S. Scandolo, High Pressure Res. 2015, 1–8.
- 10K. W. Chapman, G. J. Halder, P. J. Chupas, J. Am. Chem. Soc. 2008, 130, 10524–10526.
- 11A. J. Graham, A. M. Banu, T. Duren, A. Greenaway, S. C. McKellar, J. P. S. Mowat, K. Ward, P. A. Wright, S. A. Moggach, J. Am. Chem. Soc. 2014, 136, 8606–8613.
- 12
- 12aS. A. Moggach, T. D. Bennett, A. K. Cheetham, Angew. Chem. Int. Ed. 2009, 48, 7087–7089; Angew. Chem. 2009, 121, 7221–7223;
- 12bD. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, T. Duren, J. Am. Chem. Soc. 2011, 133, 8900–8902;
- 12cD. Fairen-Jimenez, R. Galvelis, A. Torrisi, A. D. Gellan, M. T. Wharmby, P. A. Wright, C. Mellot-Draznieks, T. Duren, Dalton Trans. 2012, 41, 10752–10762;
- 12dC. O. Ania, E. García-Pérez, M. Haro, J. J. Gutiérrez-Sevillano, T. Valdés-Solís, J. B. Parra, S. Calero, J. Phys. Chem. Lett. 2012, 3, 1159–1164.
- 13S. R. Miller, P. A. Wright, T. Devic, C. Serre, G. Ferey, P. L. Llewellyn, R. Denoyel, L. Gaberova, Y. Filinchuk, Langmuir 2009, 25, 3618–3626.
- 14H. E. Maynard-Casely, L. F. Lundegaard, I. Loa, M. I. McMahon, E. Gregoryanz, R. J. Nelmes, J. S. Loveday, J. Chem. Phys. 2014, 141, 234313.
- 15A. J. Graham, D. R. Allan, A. Muszkiewicz, C. A. Morrison, S. A. Moggach, Angew. Chem. Int. Ed. 2011, 50, 11138–11141; Angew. Chem. 2011, 123, 11334–11337.
- 16M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. de La Flor, A. Kirov, Bulg. Chem. Commun. 2011, 43, 183–197.
- 17S.-S. Liu, C.-X. Yang, S.-W. Wang, X.-P. Yan, Analyst 2012, 137, 816–818.