Carbon Nanodots: Supramolecular Electron Donor–Acceptor Hybrids Featuring Perylenediimides†
Volker Strauss
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorJohannes T. Margraf
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Computer-Chemie-Centrum & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91058 Erlangen (Germany)
Search for more papers by this authorKonstantin Dirian
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorDr. Zois Syrgiannis
Center of Excellence for Nanostructured Materials (CENMAT), Università degli Studi di Trieste, Dipartimento di Scienze Farmaceutiche, Piazzale Europa 1, 34127 Trieste (Italy)
Search for more papers by this authorProf. Dr. Maurizio Prato
Center of Excellence for Nanostructured Materials (CENMAT), Università degli Studi di Trieste, Dipartimento di Scienze Farmaceutiche, Piazzale Europa 1, 34127 Trieste (Italy)
Search for more papers by this authorDr. Cordula Wessendorf
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorProf. Dr. Andreas Hirsch
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorProf. Dr. Timothy Clark
Computer-Chemie-Centrum & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91058 Erlangen (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Dirk M. Guldi
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)Search for more papers by this authorVolker Strauss
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorJohannes T. Margraf
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Computer-Chemie-Centrum & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91058 Erlangen (Germany)
Search for more papers by this authorKonstantin Dirian
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorDr. Zois Syrgiannis
Center of Excellence for Nanostructured Materials (CENMAT), Università degli Studi di Trieste, Dipartimento di Scienze Farmaceutiche, Piazzale Europa 1, 34127 Trieste (Italy)
Search for more papers by this authorProf. Dr. Maurizio Prato
Center of Excellence for Nanostructured Materials (CENMAT), Università degli Studi di Trieste, Dipartimento di Scienze Farmaceutiche, Piazzale Europa 1, 34127 Trieste (Italy)
Search for more papers by this authorDr. Cordula Wessendorf
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorProf. Dr. Andreas Hirsch
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Search for more papers by this authorProf. Dr. Timothy Clark
Computer-Chemie-Centrum & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91058 Erlangen (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Dirk M. Guldi
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)Search for more papers by this authorThis work was supported by the Deutsche Forschungsgemeinschaft as part of SFB 953 “Synthetic Carbon Allotropes” and of the Excellence Cluster “Engineering of Advanced Materials” and the Bayerische Staatsregierung for funding “Solar Technologies go Hybrid” initiative. J.T.M. is supported by a Beilstein Foundation Scholarship. V.S. is supported by the “Universität Bayern e.V.”. This work was also supported by the European Union (Grant FP7-NMP CARINHYPH) and by the Italian Ministry of Education MIUR (FIRB “NanoSolar” RBAP11C58Y, PRIN “Hi-Phuture” 2010N3T9M4_001).
Graphical Abstract
Abstract
We describe the formation of charge-transfer complexes that feature electron-donating carbon nanodots (CND) and electron-accepting perylenediimides (PDI). The functionalities of PDIs have been selected to complement those of CNDs in terms of electrostatic and π-stacking interactions based on oppositely charged ionic head groups and extended π-systems, respectively. Importantly, the contributions from electrostatic interactions were confirmed in reference experiments, in which stronger interactions were found for PDIs that feature positively rather than negatively charged head groups. The electronic interactions between the components in the ground and excited state were characterized in complementary absorption and fluorescence titration assays that suggest charge-transfer interactions in both states with binding constants on the order of 8×104 M−1 (25 L g−1). Selective excitation of the two components in ultrafast pump probe experiments gave a 210 ps lived charge-separated state.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201502482_sm_miscellaneous_information.pdf8.7 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, M. C. Hersam, Chem. Soc. Rev. 2013, 42, 2824.
- 2T. Torres, G. Bottari, Organic Nanomaterials, Wiley, Hoboken, 2013.
- 3V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld, Wiley-VCH, Weinheim, 2008.
10.1002/9783527621682 Google Scholar
- 4E. H. L. Falcao, F. Wudl, J. Chem. Technol. Biotechnol. 2007, 82, 524.
- 5H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. A. Tsang, X. Yang, S.-T. Lee, Angew. Chem. Int. Ed. 2010, 49, 4430; Angew. Chem. 2010, 122, 4532.
- 6P. Miao, K. Han, Y. Tang, B. Wang, T. Lin, W. Cheng, Nanoscale 2015, 7, 1586.
- 7T. Akasaka, W. Fred, S. Nagasu, Chemistry of Nanocarbons, Wiley, Hoboken, 2010.
10.1002/9780470660188 Google Scholar
- 8M. Pumera, Energy Environ. Sci. 2011, 4, 668.
- 9C. Gao, Z. Guo, J.-H. Liu, X.-J. Huang, Nanoscale 2012, 4, 1948.
- 10W. Putzbach, N. J. Ronkainen, Sensors 2013, 13, 4811.
- 11K. Dirian, M. Á. Herranz, G. Katsukis, J. Malig, L. Rodríguez-Pérez, C. Romero-Nieto, V. Strauss, N. Martín, D. M. Guldi, Chem. Sci. 2013, 4, 4335.
- 12
- 12aD. M. Guldi, R. D. Costa, J. Phys. Chem. Lett. 2013, 4, 1489;
- 12bS. Kirner, M. Sekita, D. M. Guldi, Adv. Mater. 2014, 26, 1482.
- 13H. Isla, B. Grimm, E. M. Pérez, M. Rosario Torres, M. Ángeles Herranz, R. Viruela, J. Aragó, E. Ortí, D. M. Guldi, N. Martín, Chem. Sci. 2012, 3, 498.
- 14B. Grimm, J. Schornbaum, H. Jasch, O. Trukhina, F. Wessendorf, A. Hirsch, T. Torres, D. M. Guldi, Proc. Natl. Acad. Sci. USA 2012, 109, 15565.
- 15K. A. Nielsen, L. Martín-Gomis, G. H. Sarova, L. Sanguinet, D. E. Gross, F. Fernández-Lázaro, P. C. Stein, E. Levillain, J. L. Sessler, D. M. Guldi, et al., Tetrahedron 2008, 64, 8449.
- 16K. Nielsen, W.-S. Cho, G. H. Sarova, B. M. Petersen, A. D. Bond, J. Becher, F. Jensen, D. M. Guldi, J. L. Sessler, J. O. Jeppesen, Angew. Chem. Int. Ed. 2006, 45, 6848; Angew. Chem. 2006, 118, 7002.
- 17H.-J. Ahn, M.-J. Kim, K. Kim, M.-J. Kwak, J.-H. Jang, Small 2014, 10, 2325.
- 18G.-H. Kim, B. Walker, H.-B. Kim, J. Y. Kim, E. H. Sargent, J. Park, Adv. Mater. 2014, 26, 3321.
- 19S. Do, W. Kwon, S.-W. Rhee, J. Mater. Chem. C 2014, 2, 4221.
- 20J. T. Margraf, V. Strauss, D. M. Guldi, T. Clark, J. Phys. Chem. B 2015, DOI: .
- 21L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, et al., ACS Nano 2012, 6, 5102.
- 22H. Ming, Z. Ma, Y. Liu, K. Pan, H. Yu, F. Wang, Z. Kang, Dalton Trans. 2012, 41, 9526.
- 23J. Lu, P. S. E. Yeo, C. K. Gan, P. Wu, K. P. Loh, Nat. Nanotechnol. 2011, 6, 247.
- 24H. Li, Z. Kang, Y. Liu, S.-T. Lee, J. Mater. Chem. 2012, 22, 24230.
- 25S. Ghosh, A. I. A. M. Chizhik, N. Karedla, M. O. Dekaliuk, I. Gregor, H. Schuhmann, M. Seibt, K. Bodensiek, I. A. T. Schaap, O. Schulz, et al., Nano Lett. 2014, 14, 5656.
- 26V. Strauss, J. T. Margraf, C. Dolle, B. Butz, T. J. Nacken, J. Walter, W. Bauer, W. Peukert, E. Spiecker, T. Clark, et al., J. Am. Chem. Soc. 2014, 136, 17308.
- 27P. Yu, X. Wen, Y.-R. Toh, Y.-C. Lee, K.-Y. Huang, S. Huang, S. Shrestha, G. Conibeer, J. Tang, J. Mater. Chem. C 2014, 2, 2894.
- 28W. Kwon, G. Lee, S. Do, T. Joo, S.-W. W. Rhee, Small 2014, 10, 506.
- 29X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 2004, 126, 12736.
- 30Y. Song, S. Zhu, S. Xiang, X. Zhao, J. Zhang, H. Zhang, Y. Fu, B. Yang, Nanoscale 2014, 6, 4676.
- 31V. Strauss, J. T. Margraf, T. Clark, D. M. Guldi, unpublished results.
- 32C. Oelsner, C. Schmidt, F. Hauke, M. Prato, A. Hirsch, D. M. Guldi, J. Am. Chem. Soc. 2011, 133, 4580.
- 33M. A. Iron, R. Cohen, B. Rybtchinski, J. Phys. Chem. A 2011, 115, 2047.
- 34Y. Nagao, Prog. Org. Coat. 1997, 2, 43.
- 35L. Chen, C. Li, K. Müllen, J. Mater. Chem. C 2014, 2, 1938.
- 36C. D. Schmidt, C. Böttcher, A. Hirsch, Eur. J. Org. Chem. 2007, 5497.
- 37B. Wang, C. Yu, Angew. Chem. Int. Ed. 2010, 49, 1485; Angew. Chem. 2010, 122, 1527.
- 38Y. Huang, Y. Yan, B. M. Smarsly, Z. Wei, C. F. J. Faul, J. Mater. Chem. 2009, 19, 2356.
- 39F. Würthner, Z. Chen, V. Dehm, V. Stepanenko, Chem. Commun. 2006, 1188.
- 40S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, Angew. Chem. Int. Ed. 2012, 51, 12215; Angew. Chem. 2012, 124, 12381.
- 41A. D. Q. Li, W. Wang, L.-Q. Wang, Chem. Eur. J. 2003, 9, 4594.
- 42C. Ehli, C. Oelsner, D. M. Guldi, A. Mateo-Alonso, M. Prato, C. Schmidt, C. Backes, F. Hauke, A. Hirsch, Nat. Chem. 2009, 1, 243.
- 43M. Supur, S. Fukuzumi, J. Phys. Chem. C 2012, 116, 23274.
- 44A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 2009, 102, 073005.
- 45J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 46B. Delley, J. Chem. Phys. 1990, 92, 508.
- 47A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 799.
- 48B. Delley, J. Chem. Phys. 2000, 113, 7756.
- 49J. J. P. Stewart, J. Mol. Model. 2007, 13, 1173.
- 50T. Clark, A. Alex, B. Beck, F. Burkhardt, J. Chandrasekhar, P. Gedeck, A. Horn, M. Hutter, B. Martin, P. O. Dral, G. Rauhut, W. Sauer, T. Schindler, T. Steinke, VAMP 11.0, Erlangen 2011.