Growth of GaN Layers on Sapphire by Low-Temperature-Deposited Buffer Layers and Realization of p-type GaN by Magesium Doping and Electron Beam Irradiation (Nobel Lecture)†
Corresponding Author
Prof. Hiroshi Amano
Department of Electrical Engineering and Computer Science, Venture Business Laboratory, Akasaki Research Center, Nagoya University (Japan)
Department of Electrical Engineering and Computer Science, Venture Business Laboratory, Akasaki Research Center, Nagoya University (Japan)Search for more papers by this authorCorresponding Author
Prof. Hiroshi Amano
Department of Electrical Engineering and Computer Science, Venture Business Laboratory, Akasaki Research Center, Nagoya University (Japan)
Department of Electrical Engineering and Computer Science, Venture Business Laboratory, Akasaki Research Center, Nagoya University (Japan)Search for more papers by this authorCopyright© The Nobel Foundation 2014. We thank the Nobel Foundation, Stockholm, for permission to print this lecture.
Graphical Abstract
Growing success: The invention of a method to grow gallium nitride (GaN) on sapphire substrate formed the basis for the development of flat screens and smart displays based on blue-light-emitting diodes. Hiroshi Amano gives a personal account of the background of the studies that led to the technologies for growing GaN and producing p-GaN.
Abstract
This Review is a personal reflection on the research that led to the development of a method for growing gallium nitride (GaN) on a sapphire substrate. The results paved the way for the development of smart display systems using blue LEDs. The most important work was done in the mid to late 80s. The background to the author’s work and the process by which the technology that enables the growth of GaN and the realization of p-type GaN was established are reviewed.
References
- 1http://gaming.wikia.com/wiki/History_of_handheld_game_consoles.
- 2http://en.wikipedia.org/wiki/Mobile_phone.
- 3P. Schlotter, R. Schmidt, J. Schneider, Appl. Phys. A 1997, 64, 417.
- 4http://news.bbc.co.uk/2/hi/business/5085630.stm.
- 5http://www.notablebiographies.com/Ho-Jo/Jobs-Steve.html.
- 6http://www.maximizingprogress.org/2012/03/platform-wars-history-of-emergent.html.
- 7S. Porowski, I. Grzegory, J. Cryst. Growth 1997, 178, 174.
- 8F. P. Bundy, H. T. Hall, H. M. Strong, R. H. Wentorf, Nature 1955, 176, 51.
- 9W. C. Johnson, J. B. Parsons, M. C. Crew, J. Phys. Chem. 1932, 36, 7.
- 10H. P. Maruska, J. J. Tietjen, Appl. Phys. Lett. 1969, 15, 327.
- 11For example, F. C. Frank, J. H. van der Merwe, Proc. R. Soc. London Ser. A 1949, 198, 205.
- 12J. I. Pankove, E. A. Miller, D. Richman, J. E. Berkeyheiser, J. Lumin. 1971, 4, 63.
- 13For example, G. Mandel, Phys. Rev. A 1964, 134, A 1073.
- 14For example, photopic V(λ) modified by Vos (1978) http://www.cvrl.org/, Copyright 1995–2015 Color and Vision Research Labs.
- 15I. Akasaki, M. Hashimoto, Solid State Commun. 1967, 5, 851.
- 16Y. Ohki, Y. Toyoda, H. Kobayashi, I. Akasaki, Inst. Phys. Conf. Ser. 1982, 63, 479.
- 17For example, http://www.mext.go.jp/english/whitepaper/1302651.htm.
- 18M. Hashimoto, H. Amano, N. Sawaki, I. Akasaki, J. Cryst. Growth 1984, 68, 163.
- 19H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett. 1986, 48, 353.
- 20T. Nishinaga, T. Mizutani, Jpn. J. Appl. Phys. 1975, 14, 753.
- 21H. Amano, I. Akasaki, K. Hiramatsu, N. Koide, N. Sawaki, Thin Solid Films 1988, 163, 415.
- 22H. Amano, K. Hiramatsu, I. Akasaki, Jpn. J. Appl. Phys. 1988, 27, L1384.
- 23I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, N. Sawaki, J. Cryst. Growth 1989, 98, 209.
- 24H. Amano, T. Asahi, I. Akasaki, Jpn. J. Appl. Phys. 1990, 29, L205.
- 25K. Hiramatsu, H. Amano, I. Akasaki, H. Kato, N. Koide, K. Manabe, J. Cryst. Growth 1991, 107, 509.
- 26K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, K. Oki, J. Cryst. Growth 1991, 115, 628.
- 27N. Kuwano, T. Shiraishi, A. Koga, K. Oki, K. Hiramatsu, H. Amano, K. Itoh, I. Akasaki, J. Cryst. Growth 1991, 115, 381.
- 28S. Nakamura, Jpn. J. Appl. Phys. 1991, 30, 1620.
- 29H. Murakami, T. Asahi, H. Amano, K. Hiramatsu, N. Sawaki, I. Akasaki, J. Cryst. Growth 1991, 115, 648.
- 30J. N. Kuznia, M. A. Khan, D. T. Olson, R. Kaplan, J. Freitas, J. Appl. Phys. 1993, 73, 4700.
- 31S. T. Kim, H. Amano, I. Akasaki, N. Koide, Appl. Phys. Lett. 1994, 64, 1535.
- 32T. Sasaki, T. Matsuoka, J. Appl. Phys. 1995, 77, 192.
- 33Y. M. Le Vaillant, R. Bisaro, J. Oliver, O. Durand, J. Y. Duboz, S. Ruffenach-Clur, O. Briot, B. Gil, R. L. Aulombard, Mater. Sci. Eng. B 1997, 50, 32.
- 34M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 1998, 37, L316.
- 35Y. M. Le Vaillant, R. Bisaro, J. Olivier, O. Durand, J.-Y. Duboz, S. Ruffenach-Clur, O. Briot, B. Gil„ R. L. Aulombard, J. Cryst. Growth 1998, 189, 282.
- 36Y. Kobayashi, T. Akasaki, N. Kobayashi, Jpn. J. Appl. Phys. 1998, 37, L1208.
- 37T. Ito, K. Phtsuka, K. Kuwahara, M. Sumiya, Y. Takano, S. Fuke, J. Cryst. Growth 1999, 205, 20.
- 38H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawaki, K. Ikeda, Y. Ishii, J. Lumin. 1988, 40–41, 121.
- 39J. C. Phillips, Bonds and Bands in Semiconductors, 1st ed., Academic Press, New York, 1973.
- 40H. P. Maruska, W. C. Rhines, D. A. Stevenson, Mater. Res. Bull. 1972, 7, 777.
- 41H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, Jpn. J. Appl. Phys. 1989, 28, L2112.
- 42H. Amano, M. Kitoh, K. Hiramatsu, I. Akasaki, J. Electrochem. Soc. 1990, 137, 1639.
- 43I. Akasaki, H. Amano, M. Kito, K. Hiramatsu, J. Lumin. 1991, 48 & 49, 666.
- 44I. Akasaki, H. Amano, H. Murakami, M. Sassa, H. Kato, K. Manabe, J. Cryst. Growth 1993, 128, 379.
- 45S. Nakamura, M. Senoh, T. Mukai, Jpn. J. Appl. Phys. 1991, 30, L1708.
- 46S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, Jpn. J. Appl. Phys. 1992, 31, 1258.
- 47S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, Jpn. J. Appl. Phys. 1992, 31, L139.
- 48J. A. Van Vechten, J. D. Zook, R. D. Horning, B. Goldenberg, Jpn. J. Appl. Phys. 1992, 31, 3662.
- 49T. Kozawa, Master’s Thesis, Nagoya University, 1987.
- 50T. Matsuoka, H. Tanaka, T. Sasaki, A. Katsui, Inst. Phys. Conf. Ser. 1990, 106, 141.
- 51N. Yoshimoto, T. Matsuoka, T. Sasaki, A. Katsui, Appl. Phys. Lett. 1991, 59, 2251.
- 52A. Koukitu, N. Takahashi, T. Taki, H. Seki, Jpn. J. Appl. Phys. 1996, 35, L673.
- 53A. Koukitu, T. Taki, N. Takahashi, H. Seki, J. Cryst. Growth 1999, 197, 99.
- 54S. Nakamura, M. Senoh, T. Mukai, Jpn. J. Appl. Phys. 1993, 32, L8.
- 55S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, Jpn. J. Appl. Phys. 1995, 34, L797.
- 56H. Amano, I. Akasaki, Ext. Abst. Int. Conf. Solid State Devices and Materials, V-7 1995, 683.
- 57T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 1997, 36, L382.
- 58http://www.enecho.meti.go.jp/category/electricity_and_gas/nuclear/001/pdf/001_02_001.pdf (in Japanese).
- 59U.S. DOE Energy Savings Potential of Solid-State Lighting in General Illumination Applications, Jan. 2012, (2012) 4. (http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_energy-savings-report_jan-2012.pdf).
- 60Fuji Chimera Research Institute, Inc., 2014 LED Related Market Survey, (2014) 41.
- 61http://earthobservatory.nasa.gov/Features/NightLights/page3.php.