High-Fidelity Noncovalent Synthesis of Hydrogen-Bonded Macrocyclic Assemblies†
Carlos Montoro-García
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorJorge Camacho-García
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorDr. Ana M. López-Pérez
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorNerea Bilbao
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorSonia Romero-Pérez
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorDr. María J. Mayoral
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorCorresponding Author
Dr. David González-Rodríguez
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)Search for more papers by this authorCarlos Montoro-García
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorJorge Camacho-García
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorDr. Ana M. López-Pérez
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorNerea Bilbao
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorSonia Romero-Pérez
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorDr. María J. Mayoral
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Search for more papers by this authorCorresponding Author
Dr. David González-Rodríguez
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)
Nanostructured Molecular Systems and Materials group Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid (Spain)Search for more papers by this authorFunding from MINECO (CTQ2011-23659) and the E.U. (ERC-Starting Grant 279548) is gratefully acknowledged.
Graphical Abstract
Abstract
A hydrogen-bonded cyclic tetramer is assembled with remarkably high effective molarities from a properly designed dinucleoside monomer. This self-assembled species exhibits an impressive thermodynamic and kinetic stability and is formed with high fidelities within a broad concentration range.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201501321_sm_miscellaneous_information.pdf8.6 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. J. Prins, D. N. Reinhoudt, P. Timmerman, Angew. Chem. Int. Ed. 2001, 40, 2382–2426;
10.1002/1521-3773(20010702)40:13<2382::AID-ANIE2382>3.0.CO;2-G CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 2446–2492.
- 2M. Iyoda, J. Yamakawa, M. J. Rahman, Angew. Chem. Int. Ed. 2011, 50, 10522–10553; Angew. Chem. 2011, 123, 10708–10740.
- 3P. Ballester, J. de Mendoza, in Modern Supramolecular Chemistry (Eds.: ), Wiley-VCH, Weinheim, 2008, pp. 69–111.
- 4S. Höger, Angew. Chem. Int. Ed. 2005, 44, 3806–3808; Angew. Chem. 2005, 117, 3872–3875.
- 5
- 5aC. A. Hunter, H. L. Anderson, Angew. Chem. Int. Ed. 2009, 48, 7488–7499; Angew. Chem. 2009, 121, 7624–7636;
- 5bG. Ercolani, L. Schiaffino, Angew. Chem. Int. Ed. 2011, 50, 1762–1768; Angew. Chem. 2011, 123, 1800–1807.
- 6Focus Issue on Cooperativity: Nat. Chem. Biol. 2008, 4, 433–507.
- 7L. Mandolini, Adv. Phys. Org. Chem. 1986, 22, 1–111.
- 8
- 8aX. Chi, A. J. Guerin, R. A. Haycock, C. A. Hunter, L. D. Sarson, J. Chem. Soc. Chem. Commun. 1995, 2563–2565;
- 8bG. Ercolani, J. Phys. Chem. B 1998, 102, 5699–5703;
- 8cG. Ercolani, J. Phys. Chem. B 2003, 107, 5052–5057;
- 8dG. Ercolani, Struct. Bond. 2006, 121, 167–215.
- 9The influence of different factors on chelate cooperativity has been analyzed. See:
- 9aC. A. Hunter, M. C. Misuraca, S. M. Turega, J. Am. Chem. Soc. 2011, 133, 20416–20425;
- 9bM. C. Misuraca, T. Grecu, Z. Freixa, V. Garavini, C. A. Hunter, P. van Leeuwen, M. D. Segarra-Maset, S. M. Turega, J. Org. Chem. 2011, 76, 2723–2732;
- 9cH. J. Hogben, J. K. Sprafke, M. Hoffmann, M. Pawlicki, H. L. Anderson, J. Am. Chem. Soc. 2011, 133, 20962–20969;
- 9dC. A. Hunter, M. C. Misuraca, S. M. Turega, Chem. Sci. 2012, 3, 589–601;
- 9eC. A. Hunter, M. C. Misuraca, S. M. Turega, Chem. Sci. 2012, 3, 2462–2469;
- 9fH. Adams, E. Chekmeneva, C. A. Hunter, M. C. Misuraca, C. Navarro, S. M. Turega, J. Am. Chem. Soc. 2013, 135, 1853–1863;
- 9gH. Sun, C. A. Hunter, C. Navarro, S. Turega, J. Am. Chem. Soc. 2013, 135, 13129–13141.
- 10For other cyclic tetramer assemblies whose EMs have been calculated, see:
- 10aX. Chi, A. J. Guerin, R. A. Haycock, C. A. Hunter, L. D. Sarson, J. Chem. Soc. Chem. Commun. 1995, 2567–2569;
- 10bG. Ercolani, M. Ioele, D. Monti, New J. Chem. 2001, 25, 783–789;
- 10cI.-W. Hwang, T. Kamada, T. K. Ahn, D. M. Ko, T. Nakamura, A. Tsuda, A. Osuka, D. Kim, J. Am. Chem. Soc. 2004, 126, 16187–16198.
- 11For other hydrogen-bonded cyclic tetramer assemblies in solution, see:
- 11aC. Nuckolls, F. Hof, T. Martín Jr., J. Rebek, J. Am. Chem. Soc. 1999, 121, 10281–10285;
- 11bH. Ohkawa, A. Takayama, S. Nakajima, H. Nishide, Org. Lett. 2006, 8, 2225–2228;
- 11cE. Orentas, C.-J. Wallentin, K.-E. Bergquist, M. Lund, E. Butkus, K. Wärnmark, Angew. Chem. Int. Ed. 2011, 50, 2071–2074; Angew. Chem. 2011, 123, 2119–2122;
- 11dY. Yang, M. Xue, L. J. Marshall, J. de Mendoza, Org. Lett. 2011, 13, 3186–3189.
- 12For the use of nucleobases in supramolecular chemistry:
- 12aS. Sivakova, S. J. Rowan, Chem. Soc. Rev. 2005, 34, 9–21;
- 12bJ. L. Sessler, C. M. Lawrence, J. Jayawickramarajah, Chem. Soc. Rev. 2007, 36, 314–325.
- 13J. Camacho-García, C. Montoro-García, A. M. López-Pérez, N. Bilbao, S. Romero-Pérez, D. González-Rodríguez, Org. Biomol. Chem. 2015, 13, 4506–4513.
- 14See the Supporting Information for further details.
- 15
- 15aD. González-Rodríguez, J. L. J. van Dongen, M. Lutz, A. L. Spek, A. P. H. J. Schenning, E. W. Meijer, Nat. Chem. 2009, 1, 151–155;
- 15bD. González-Rodríguez, P. G. A. Janssen, R. Martín-Rapún, I. De Cat, S. De Feyter, A. P. H. J. Schenning, E. W. Meijer, J. Am. Chem. Soc. 2010, 132, 4710–4719.
- 16Cyclic trimer or pentamer assemblies were not properly fitted by the different methods employed in this work. Molecular modeling studies at the PM3 level (see Figure S5) show that these structures are more strained and far from achieving an optimal G–C hydrogen-bonding geometry. Moreover, cyclic tetramer assemblies were observed by STM studies over HOPG, which will be the subject of a forthcoming publication.
- 17The competition trends and the calculated EM values seem to reveal a relationship between EM and binding strength (Kref), modulated by the solvent. Further studies will be performed to address this issue.
- 18To the best of our knowledge, this is the first example of a hydrogen-bonded cyclic tetramer whose EM values were calculated, so we could not make a direct comparison. A cyclic trimer, assembled through two hydrogen-bonding interactions, was reported to have EM values of 760 M. See Ref. [3] and:
- 18aS. C. Zimmerman, B. F. Duerr, J. Org. Chem. 1992, 57, 2215–2217. On the other hand, a related ethenylene-bound G-C monomer has been reported by the Sessler′s group to produce instead trimeric macrocycles:
- 18bJ. L. Sessler, J. Jayawickramarajah, M. Sathiosatham, C. L. Sherman, J. S. Brodbelt, Org. Lett. 2003, 5, 2627–2630.