Organic Synthesis: March of the Machines
Corresponding Author
Prof. Steven V. Ley
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)Search for more papers by this authorDaniel E. Fitzpatrick
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
Search for more papers by this authorDr. Richard. J. Ingham
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
Search for more papers by this authorDr. Rebecca M. Myers
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
Search for more papers by this authorCorresponding Author
Prof. Steven V. Ley
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)Search for more papers by this authorDaniel E. Fitzpatrick
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
Search for more papers by this authorDr. Richard. J. Ingham
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
Search for more papers by this authorDr. Rebecca M. Myers
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
Search for more papers by this authorGraphical Abstract
Transforming chemistry: New technologies and machines have found use as methods for changing the way we work, addressing the resource-based issues encountered in research laboratories by enabling chemists to adopt a more holistic systems approach in their work. This Review focuses on the concepts, procedures, and methods that have far-reaching implications in the chemistry world.
Abstract
Organic synthesis is changing; in a world where budgets are constrained and the environmental impacts of practice are scrutinized, it is increasingly recognized that the efficient use of human resource is just as important as material use. New technologies and machines have found use as methods for transforming the way we work, addressing these issues encountered in research laboratories by enabling chemists to adopt a more holistic systems approach in their work. Modern developments in this area promote a multi-disciplinary approach and work is more efficient as a result. This Review focuses on the concepts, procedures and methods that have far-reaching implications in the chemistry world. Technologies have been grouped as topics of opportunity and their recent applications in innovative research laboratories are described.
References
- 1For more information, visit: http://we-create-chemistry.basf.com/en.
- 2
- 2aS. Marre, Y. Roig, C. Aymonier, J. Supercrit. Fluids 2012, 66, 251–264;
- 2bP. Lozano, E. Garcia-Verdugo, S. V. Luis, M. Pucheault, M. Vaultier, Curr. Org. Synth. 2011, 8, 810–823;
- 2cX. Han, M. Poliakoff, Chem. Soc. Rev. 2012, 41, 1428–1436.
- 3
- 3aY. Su, N. J. W. Straathof, V. Hessel, T. Noël, Chemistry 2014, 20, 10562–10589;
- 3bJ. P. Knowles, L. D. Elliott, K. I. Booker-Milburn, Beilstein J. Org. Chem. 2012, 8, 2025–2052;
- 3cK. Gilmore, P. H. Seeberger, Chem. Rec. 2014, 14, 410–418;
- 3dN. Hoffmann, ChemSusChem 2012, 5, 352–371.
- 4
- 4aK. Watts, A. Baker, T. Wirth, J. Flow Chem. 2014, 4, 2–11;
- 4bF. J. del Campo, Electrochem. Commun. 2014, 45, 91–94.
- 5T. Razzaq, C. O. Kappe, Chem. Asian J. 2010, 5, 1274–1289.
- 6P. Žnidaršič-Plazl, Chim. Oggi Chem. Today 2014, 32, 54–60.
- 7R. L. Hartman, Org. Process Res. Dev. 2012, 16, 870–887.
- 8Q. N. N. Nguyen, D. J. Tantillo, Chem. Asian J. 2014, 9, 674–680.
- 9
- 9aM. A. Kayala, C.-A. Azencott, J. H. Chen, P. Baldi, J. Chem. Inf. Model. 2011, 51, 2209–2222;
- 9bM. A. Kayala, P. Baldi, J. Chem. Inf. Model. 2012, 52, 2526–2540.
- 10M. Reutlinger, T. Rodrigues, P. Schneider, G. Schneider, Angew. Chem. Int. Ed. 2014, 53, 582–585; Angew. Chem. 2014, 126, 593–596.
- 11W. A. Warr, Mol. Inf. 2014, 33, 469–476.
- 12
- 12aS. Cai, X. Wang, F.-K. Chiang, Comput. Hum. Behav. 2014, 37, 31–40;
- 12bB. Venkataraman, Chem. Educ. Res. Pract. 2009, 10, 62–69.
- 13G. McGill, Cell 2008, 133, 1127–1132.
- 14B. J. Deadman, C. Battilocchio, E. Sliwinski, S. V. Ley, Green Chem. 2013, 15, 2050–2055.
- 15B. Z. Cvetković, O. Lade, L. Marra, V. Arima, R. Rinaldi, P. S. Dittrich, RSC Adv. 2012, 2, 11117–11122.
- 16R. L. Hartman, J. R. Naber, S. L. Buchwald, K. F. Jensen, Angew. Chem. Int. Ed. 2010, 49, 899–903; Angew. Chem. 2010, 122, 911–915.
- 17M. O’Brien, N. Taylor, A. Polyzos, I. R. Baxendale, S. V. Ley, Chem. Sci. 2011, 2, 1250–1257.
- 18M. O’Brien, P. Koos, D. L. Browne, S. V. Ley, Org. Biomol. Chem. 2012, 10, 7031–7036.
- 19
- 19aD. X. Hu, M. O’Brien, S. V. Ley, Org. Lett. 2012, 14, 4246–4249;
- 19bS. L. Bourne, M. O’Brien, S. Kasinathan, P. Koos, P. Tolstoy, D. X. Hu, R. W. Bates, B. Martin, B. Schenkel, S. V. Ley, ChemCatChem 2013, 5, 159–172.
- 20R. J. Ingham, C. Battilocchio, D. E. Fitzpatrick, E. Sliwinski, J. M. Hawkins, S. V. Ley, Angew. Chem. Int. Ed. 2014, DOI: ; Angew. Chem. 2014, DOI: .
- 21A. Adamo, P. L. Heider, N. Weeranoppanant, K. F. Jensen, Ind. Eng. Chem. Res. 2013, 52, 10802–10808.
- 22T. A. Hamlin, G. M. L. Lazarus, C. B. Kelly, N. E. Leadbeater, Org. Process Res. Dev. 2014, 18, 1253–1258.
- 23C. Battilocchio, B. J. Deadman, N. Nikbin, M. O. Kitching, I. R. Baxendale, S. V. Ley, Chem. Eur. J. 2013, 19, 7917–7930.
- 24C. H. Hornung, M. R. Mackley, I. R. Baxendale, S. V. Ley, Org. Process Res. Dev. 2007, 11, 399–405.
- 25S. Newton, C. F. Carter, C. M. Pearson, L. de C. Alves, H. Lange, P. Thansandote, S. V. Ley, Angew. Chem. Int. Ed. 2014, 53, 4915–4920; Angew. Chem. 2014, 126, 5015–5020.
- 26S. M. Colegate, D. R. Gardner, J. M. Betz, K. E. Panter, Phytochem. Anal. 2014, 25, 429–438.
- 27A. G. O’Brien, Z. Horváth, F. Lévesque, J. W. Lee, A. Seidel-Morgenstern, P. H. Seeberger, Angew. Chem. Int. Ed. 2012, 51, 7028–7030; Angew. Chem. 2012, 124, 7134–7137.
- 28H. Zhang, R. Lakerveld, P. L. Heider, M. Tao, M. Su, C. J. Testa, A. N. D’Antonio, P. I. Barton, R. D. Braatz, B. L. Trout, A. S. Myerson, K. F. Jensen, J. M. B. Evans, Cryst. Growth Des. 2014, 14, 2148–2157.
- 29S. Mascia, P. L. Heider, H. Zhang, R. Lakerveld, B. Benyahia, P. I. Barton, R. D. Braatz, C. L. Cooney, J. M. B. Evans, T. F. Jamison, K. F. Jensen, A. S. Myerson, B. L. Trout, Angew. Chem. Int. Ed. 2013, 52, 12359–12363; Angew. Chem. 2013, 125, 12585–12589.
- 30S. Jezierski, V. Tehsmer, S. Nagl, D. Belder, Chem. Commun. 2013, 49, 11644–11646.
- 31C. F. Carter, H. Lange, S. V. Ley, I. R. Baxendale, B. Wittkamp, J. G. Goode, N. L. Gaunt, Org. Process Res. Dev. 2010, 14, 393–404.
- 32Z. Qian, I. R. Baxendale, S. V. Ley, Chemistry 2010, 16, 12342–12348.
- 33H. Lange, C. F. C. Carter, M. D. M. Hopkin, A. Burke, J. G. Goode, I. R. Baxendale, S. V. Ley, Chem. Sci. 2011, 2, 765–769.
- 34For more information refer to: http://www.ni.com.
- 35A. E. Cervera-Padrell, J. P. Nielsen, M. J. Pedersen, K. M. Christensen, A. R. Mortensen, T. Skovby, K. Dam-Johansen, S. Kiil, K. V. Gernaey, Org. Process Res. Dev. 2012, 16, 901–914.
- 36J. S. Moore, K. F. Jensen, Angew. Chem. Int. Ed. 2014, 53, 470–473; Angew. Chem. 2014, 126, 480–483.
- 37D. L. Browne, S. Wright, B. J. Deadman, S. Dunnage, I. R. Baxendale, R. M. Turner, S. V. Ley, Rapid Commun. Mass Spectrom. 2012, 26, 1999–2010.
- 38D. Ban, T. M. Sabo, C. Griesinger, D. Lee, Molecules 2013, 18, 11904–11937.
- 39J. Bart, A. J. Kolkman, A. J. Oosthoek-de Vries, K. Koch, P. J. Nieuwland, H. J. W. G. Janssen, J. P. J. M. van Bentum, K. A. M. Ampt, F. P. J. T. Rutjes, S. S. Wijmenga, H. J. G. E. Gardeniers, A. P. M. Kentgens, J. Am. Chem. Soc. 2009, 131, 5014–5015.
- 40M. V. Gomez, H. H. J. Verputten, A. Díaz-Ortíz, A. Moreno, A. de La Hoz, A. H. Velders, Chem. Commun. 2010, 46, 4514–4516.
- 41T. A. Hamlin, N. E. Leadbeater, Beilstein J. Org. Chem. 2013, 9, 1843–1852.
- 42
- 42aR. J. Ingham, C. Battilocchio, J. M. Hawkins, S. V. Ley, Beilstein J. Org. Chem. 2014, 10, 641–652;
- 42bL. Guetzoyan, R. J. Ingham, N. Nikbin, J. Rossignol, M. Wolling, M. Baumert, N. A. Burgess-Brown, C. M. Strain-Damerell, L. Shrestha, P. E. Brennan, O. Fedorov, S. Knapp, S. V. Ley, MedChemComm 2014, 5, 540–546.
- 43W. Wongwilai, S. Lapanantnoppakhun, S. Grudpan, K. Grudpan, Talanta 2010, 81, 1137–1141.
- 44S. V. Ley, R. J. Ingham, M. O’Brien, D. L. Browne, Beilstein J. Org. Chem. 2013, 9, 1051–1072.
- 45T. Schwaebel, S. Menning, U. H. F. Bunz, Chem. Sci. 2014, 5, 1422–1428.
- 46K.-T. Hsieh, P. L. Urban, RSC Adv. 2014, 4, 31094–31100.
- 47P. Yi, A. A. Kayani, A. F. Chrimes, K. Ghorbani, S. Nahavandi, K. Kalantar-zadeh, K. Khoshmanesh, Lab Chip 2012, 12, 2520–2525.
- 48P. Öhrngren, A. Fardost, F. Russo, J.-S. Schanche, M. Fagrell, M. Larhed, Org. Process Res. Dev. 2012, 16, 1053–1063.
- 49Y.-F. Lin, Y.-H. Wu, S.-M. Lai, Ind. Eng. Chem. Res. 2012, 51, 10778–10784.
- 50M. O’Brien, R. Denton, S. Ley, Synthesis 2011, 1157–1192.
- 51C. Jamieson, M. S. Congreve, D. F. Emiabata-Smith, S. V. Ley, Synlett 2000, 1603–1607.
- 52S. A. Weissman, N. G. Anderson, Org. Process Res. Dev. 2014, DOI: .
- 53F. Venturoni, N. Nikbin, S. V. Ley, I. R. Baxendale, Org. Biomol. Chem. 2010, 8, 1798–1806.
- 54E. M. Chan, C. Xu, A. W. Mao, G. Han, J. S. Owen, B. E. Cohen, D. J. Milliron, Nano Lett. 2010, 10, 1874–1885.
- 55
- 55aFor a review of the tools, techniques, and the optimization algorithms, see: D. C. Fabry, E. Sugiono, M. Rueping, Isr. J. Chem. 2014, 54, 341–350;
- 55bfor a description of microfluidic platforms, see: J. P. McMullen, K. F. Jensen, Annu. Rev. Anal. Chem. 2010, 3, 19–42.
- 56R. A. Bourne, R. A. Skilton, A. J. Parrott, D. J. Irvine, M. Poliakoff, Org. Process Res. Dev. 2011, 15, 932–938.
- 57A. J. Parrott, R. A. Bourne, G. R. Akien, D. J. Irvine, M. Poliakoff, Angew. Chem. Int. Ed. 2011, 50, 3788–3792; Angew. Chem. 2011, 123, 3872–3876.
- 58J. P. McMullen, M. T. Stone, S. L. Buchwald, K. F. Jensen, Angew. Chem. Int. Ed. 2010, 49, 7076–7080; Angew. Chem. 2010, 122, 7230–7234.
- 59R. A. Skilton, A. J. Parrott, M. W. George, M. Poliakoff, R. A. Bourne, Appl. Spectrosc. 2013, 67, 1127–1131.
- 60J. S. Moore, K. F. Jensen, Org. Process Res. Dev. 2012, 16, 1409–1415.
- 61C. H. Hornung, M. R. Mackley, I. R. Baxendale, S. V. Ley, Org. Process Res. Dev. 2007, 11, 399–405.
- 62J. P. McMullen, K. F. Jensen, Org. Process Res. Dev. 2011, 15, 398–407.
- 63I. R. Baxendale, C. M. Griffiths-Jones, S. V. Ley, G. K. Tranmer, Synlett 2006, 3, 427–430.
- 64C. M. Griffiths-Jones, M. D. Hopkin, D. Jönsson, S. V. Ley, D. J. Tapolczay, E. Vickerstaffe, M. Ladlow, J. Comb. Chem. 2007, 9, 422–430.
- 65K. R. Knudsen, J. Holden, S. V. Ley, M. Ladlow, Adv. Synth. Catal. 2007, 349, 535–538.
- 66P. L. Heider, S. C. Born, S. Basak, B. Benyahia, R. Lakerveld, H. Zhang, R. Hogan, L. Buchbinder, A. Wolfe, S. Mascia, J. M. B. Evans, T. F. Jamieson, K. F. Jensen, Org. Process Res. Dev. 2014, 18, 402–409.
- 67G. M. Keserű, T. Soós, C. O. Kappe, Chem. Soc. Rev. 2014, 43, 5387–5399.
- 68A. McNally, C. K. Prier, D. W. C. MacMillan, Science 2011, 334, 1114–1117.
- 69A. Waldbaur, H. Rapp, K. Länge, B. E. Rapp, Anal. Methods 2011, 3, 2681–2716.
- 70M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. T. Cooper, R. W. Bowman, T. Vilbrandt, L. Cronin, Nat. Chem. 2012, 4, 349–354.
- 71P. J. Kitson, M. D. Symes, V. Dragone, L. Cronin, Chem. Sci. 2013, 4, 3099–3103.
- 72V. Dragone, V. Sans, M. H. Rosnes, P. J. Kitson, L. Cronin, Beilstein J. Org. Chem. 2013, 9, 951–959.
- 73P. J. Kitson, R. J. Marshall, D. Long, R. S. Forgan, L. Cronin, Angew. Chem. Int. Ed. 2014, 53, 12723–12728; Angew. Chem. 2014, 126, 12937–12942.
- 74For more information about the Internet of Things, refer to: http://www.mckinsey.com/insights/high_tech_telecoms_internet/the_internet_of_things.
- 75M. D. Steinberg, P. Kassal, B. Tkalčec, I. M. Steinberg, Talanta 2014, 118, 375–381.
- 76S. Giselbrecht, B. E. Rapp, C. M. Niemeyer, Angew. Chem. Int. Ed. 2013, 52, 13942–13957; Angew. Chem. 2013, 125, 14190–14206.