Recent Approaches for the Direct Use of Elemental Sulfur in the Synthesis and Processing of Advanced Materials
Dr. Jeewoo Lim
National Creative Research Initiative Center for Intelligent Hybrids, WCU Program of Chemical Convergence for Energy & Environment, School of Chemical & Biological Engineering, Seoul National University (Republic of Korea)
Search for more papers by this authorCorresponding Author
Prof. Jeffrey Pyun
National Creative Research Initiative Center for Intelligent Hybrids, WCU Program of Chemical Convergence for Energy & Environment, School of Chemical & Biological Engineering, Seoul National University (Republic of Korea)
Department of Chemistry and Biochemistry, The University of Arizona (USA)
National Creative Research Initiative Center for Intelligent Hybrids, WCU Program of Chemical Convergence for Energy & Environment, School of Chemical & Biological Engineering, Seoul National University (Republic of Korea)Search for more papers by this authorCorresponding Author
Prof. Kookheon Char
National Creative Research Initiative Center for Intelligent Hybrids, WCU Program of Chemical Convergence for Energy & Environment, School of Chemical & Biological Engineering, Seoul National University (Republic of Korea)
National Creative Research Initiative Center for Intelligent Hybrids, WCU Program of Chemical Convergence for Energy & Environment, School of Chemical & Biological Engineering, Seoul National University (Republic of Korea)Search for more papers by this authorDr. Jeewoo Lim
National Creative Research Initiative Center for Intelligent Hybrids, WCU Program of Chemical Convergence for Energy & Environment, School of Chemical & Biological Engineering, Seoul National University (Republic of Korea)
Search for more papers by this authorCorresponding Author
Prof. Jeffrey Pyun
National Creative Research Initiative Center for Intelligent Hybrids, WCU Program of Chemical Convergence for Energy & Environment, School of Chemical & Biological Engineering, Seoul National University (Republic of Korea)
Department of Chemistry and Biochemistry, The University of Arizona (USA)
National Creative Research Initiative Center for Intelligent Hybrids, WCU Program of Chemical Convergence for Energy & Environment, School of Chemical & Biological Engineering, Seoul National University (Republic of Korea)Search for more papers by this authorCorresponding Author
Prof. Kookheon Char
National Creative Research Initiative Center for Intelligent Hybrids, WCU Program of Chemical Convergence for Energy & Environment, School of Chemical & Biological Engineering, Seoul National University (Republic of Korea)
National Creative Research Initiative Center for Intelligent Hybrids, WCU Program of Chemical Convergence for Energy & Environment, School of Chemical & Biological Engineering, Seoul National University (Republic of Korea)Search for more papers by this authorGraphical Abstract
Dealing with excess: The growing global production of excess elemental sulfur is an environmental concern and calls for novel approaches of utilizing the material as a feedstock for materials and industrial applications. This Minireview gives an overview of recent physical processing methods and synthetic procedures involving the direct use of elemental sulfur.
Abstract
Elemental sulfur is an abundant and inexpensive material obtained as a by-product of natural-gas and petroleum refining operations. Recently, the need for the development of new energy-storage systems brought into light the potential of sulfur as a high-capacity cathode material in secondary batteries. Sulfur-containing materials were also shown to have useful IR optical properties. These developments coupled with growing environmental concerns related to the global production of excess elemental sulfur have led to a keen interest in its utilization as a feedstock in materials applications. This Minireview focuses on the recent developments on physical and chemical methods for directly processing elemental sulfur to produce functional composites and polymers.
References
- 1G. Kutney in Sulfur. History, Technology, Applications and Industry, ChemTec, Toronto, 2007.
- 2H. Frasch, U.S. Patent 461,429/31, 1891.
- 3W. L. Orr, Abstr. Pap. Am. Chem. Soc. 1976, 172, 6.
- 4
- 4aJ. A. Rodriguez, J. Hrbek, Acc. Chem. Res. 1999, 32, 719–728;
- 4bC. Xie, Y. S. Chen, M. H. Engelhard, C. S. Song, ACS Catal. 2012, 2, 1127–1137;
- 4cS. L. Lakhapatri, M. A. Abraham, Catal. Sci. Technol. 2013, 3, 2755–2760.
- 5C. F. Claus, British Patent 3608, 1882.
- 6
- 6aT. V. Choudhary, J. Malandra, J. Green, S. Parrott, B. Johnson, Angew. Chem. Int. Ed. 2006, 45, 3299–3303; Angew. Chem. 2006, 118, 3377–3381;
- 6bS. Brunet, D. Mey, G. Perot, C. Bouchy, F. Diehl, Appl. Catal. A 2005, 278, 143–172;
- 6cN. Gupta, P. K. Roychoudhury, J. K. Deb, Appl. Microbiol. Biotechnol. 2005, 66, 356–366;
- 6dI. V. Babich, J. A. Moulijn, Fuel 2003, 82, 607–631;
- 6eA. J. Hernández-Maldonado, R. T. Yang, Ind. Eng. Chem. Res. 2003, 42, 3103–3110;
- 6fA. J. Hernández-Maldonado, R. T. Yang, Ind. Eng. Chem. Res. 2003, 42, 123–129;
- 6gR. T. Yang, A. J. Hernandez-Maldonado, F. H. Yang, Science 2003, 301, 79–81.
- 7M. Al-Ansary, E. Masad, D. Strickland in Proceedings of the 2nd Annual Gas Processing Symposium (Eds.: ), Elsevier, Amsterdam, 2010, pp. 121–130.
10.1016/S1876-0147(10)02014-8 Google Scholar
- 8Sulfuric acid is in part consumed in the petrochemical industry in the production of alkylates, but this represents only a small fraction of the overall demand of sulfuric acid.
- 9Y. X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186–13200; Angew. Chem. 2013, 125, 13426–13441.
- 10
- 10aB. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928–935;
- 10bR. Steudel, Y. Steudel, Chem. Eur. J. 2013, 19, 3162–3176.
- 11J. G. Liu, M. Ueda, J. Mater. Chem. 2009, 19, 8907–8919.
- 12J. J. Griebel, S. Namnabat, E. T. Kim, R. Himmelhuber, D. H. Moronta, W. J. Chung, A. G. Simmonds, K. J. Kim, J. van der Laan, N. A. Nguyen, E. L. Dereniak, M. E. Mackay, K. Char, R. S. Glass, R. A. Norwood, J. Pyun, Adv. Mater. 2014, 26, 3014–3018.
- 13
- 13aR. A. Musah, E. Kim, R. Kubec, Phosphorus Sulfur Silicon Relat. Elem. 2005, 180, 1455–1456;
- 13bS. Kim, R. Kubec, R. A. Musah, J. Ethnopharmacol. 2006, 104, 188–192;
- 13cR. G. Chaudhuri, S. Paria, J. Colloid Interface Sci. 2010, 343, 439–446;
- 13dK. J. Rao, S. Paria, RSC Adv. 2013, 3, 10471–10478.
- 14G. Liu, P. Niu, L. C. Yin, H. M. Cheng, J. Am. Chem. Soc. 2012, 134, 9070–9073.
- 15
- 15aY. H. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634–6654;
- 15bS. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem. Int. Ed. 2002, 41, 898–952; Angew. Chem. 2002, 114, 938–993.
- 16R. Steudel, B. Eckert, Top. Curr. Chem. 2003, 230, 1–79.
- 17R. Steudel, Chem. Rev. 2002, 102, 3905–3945.
- 18S. Xin, Y. G. Guo, L. J. Wan, Acc. Chem. Res. 2012, 45, 1759–1769.
- 19
- 19aK. S. Andrikopoulos, A. G. Kalampounias, S. N. Yannopoulos, Soft Matter 2011, 7, 3404–3411;
- 19bF. Begum, R. H. Sarker, S. L. Simon, J. Phys. Chem. B 2013, 117, 3911–3916.
- 20B. Meyer, Chem. Rev. 1976, 76, 367–388.
- 21R. F. Bacon, R. Fanelli, J. Am. Chem. Soc. 1943, 65, 639–648.
- 22T. Scopigno, S. N. Yannopoulos, F. Scarponi, K. S. Andrikopoulos, D. Fioretto, G. Ruocco, Phys. Rev. Lett. 2007, 99, 025701.
- 23
- 23aS. C. Greer, J. Phys. Chem. B 1998, 102, 5413–5422;
- 23bV. F. Kozhevnikov, J. M. Viner, P. C. Taylor, Phys. Rev. B 2001, 64, 214109;
- 23cP. Ballone, R. O. Jones, J. Chem. Phys. 2003, 119, 8704–8715;
- 23dV. F. Kozhevnikov, W. B. Payne, J. K. Olson, C. L. McDonald, C. E. Inglefield, J. Chem. Phys. 2004, 121, 7379–7386;
- 23eG. Monaco, L. Crapanzano, R. Bellissent, W. Crichton, D. Fioretto, M. Mezouar, F. Scarponi, R. Verbeni, Phys. Rev. Lett. 2005, 95, 255502;
- 23fB. Ruta, G. Monaco, F. Scarponi, D. Fioretto, K. S. Andrikopoulos, J. Non-Cryst. Solids 2011, 357, 563–566.
- 24X. L. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500–506.
- 25S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 2000, 122, 10712–10713.
- 26S. R. Chen, Y. P. Zhai, G. L. Xu, Y. X. Jiang, D. Y. Zhao, J. T. Li, L. Huang, S. G. Sun, Electrochim. Acta 2011, 56, 9549–9555.
- 27G. He, X. L. Ji, L. Nazar, Energy Environ. Sci. 2011, 4, 2878–2883.
- 28J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, L. F. Nazar, Angew. Chem. Int. Ed. 2012, 51, 3591–3595; Angew. Chem. 2012, 124, 3651–3655.
- 29R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Adv. Mater. 2011, 23, 5641–5644.
- 30X. L. Ji, S. Evers, R. Black, L. F. Nazar, Nat. Commun. 2011, 2, 325.
- 31W. Z. Bao, Z. A. Zhang, C. K. Zhou, Y. Q. Lai, J. Li, J. Power Sources 2014, 248, 570–576.
- 32N. Tachikawa, K. Yamauchi, E. Takashima, J. W. Park, K. Dokko, M. Watanabe, Chem. Commun. 2011, 47, 8157–8159.
- 33S. Xin, Y. X. Yin, L. J. Wan, Y. G. Guo, Part. Part. Syst. Charact. 2013, 30, 321–325.
- 34Z. Li, L. X. Yuan, Z. Q. Yi, Y. Liu, Y. Xin, Z. L. Zhang, Y. H. Huang, Nanoscale 2014, 6, 1653–1660.
- 35
- 35aB. Ding, C. Z. Yuan, L. F. Shen, G. Y. Xu, P. Nie, X. G. Zhang, Chem. Eur. J. 2013, 19, 1013–1019;
- 35bG. Y. Xu, B. Ding, L. F. Shen, P. Nie, J. P. Han, X. G. Zhang, J. Mater. Chem. A 2013, 1, 4490–4496;
- 35cG. Y. Xu, B. Ding, P. Nie, L. F. Shen, H. Dou, X. G. Zhang, ACS Appl. Mater. Interfaces 2014, 6, 194–199;
- 35dB. Zhang, M. Xiao, S. Wang, D. Han, S. Song, G. Chen, Y. Meng, ACS Appl. Mater. Interfaces 2014, 6, 13174–13182.
- 36G. Y. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui, Nano Lett. 2011, 11, 4462–4467.
- 37B. Zhang, X. Qin, G. R. Li, X. P. Gao, Energy Environ. Sci. 2010, 3, 1531–1537.
- 38S. Xin, L. Gu, N. H. Zhao, Y. X. Yin, L. J. Zhou, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc. 2012, 134, 18510–18513.
- 39G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surblé, J. Dutour, I. Margiolaki, Angew. Chem. Int. Ed. 2004, 43, 6296–6301; Angew. Chem. 2004, 116, 6456–6461.
- 40R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Ferey, J. M. Tarascon, J. Am. Chem. Soc. 2011, 133, 16154–16160.
- 41Z. Q. Wang, X. Li, Y. J. Cui, Y. Yang, H. G. Pan, Z. Y. Wang, C. D. Wu, B. L. Chen, G. D. Qian, Cryst. Growth Des. 2013, 13, 5116–5120.
- 42R. Steudel, Y. Steudel, M. W. Wong, Top. Curr. Chem. 2003, 230, 117–134.
- 43J. A. Korpiel, R. D. Vidic, Environ. Sci. Technol. 1997, 31, 2319–2325.
- 44J. C. Guo, Y. H. Xu, C. S. Wang, Nano Lett. 2011, 11, 4288–4294.
- 45N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904–5908; Angew. Chem. 2011, 123, 6026–6030.
- 46T. Fujimori, A. Morelos-Gomez, Z. Zhu, H. Muramatsu, R. Futamura, K. Urita, M. Terrones, T. Hayashi, M. Endo, S. Y. Hong, Y. C. Choi, D. Tomanek, K. Kaneko, Nat. Commun. 2013, 4, 2162.
- 47
- 47aY. Akahama, M. Kobayashi, H. Kawamura, Phys. Rev. B 1993, 48, 6862–6864;
- 47bH. Luo, S. Desgreniers, Y. K. Vohra, A. L. Ruoff, Phys. Rev. Lett. 1991, 67, 2998–3001.
- 48C. D. Liang, N. J. Dudney, J. Y. Howe, Chem. Mater. 2009, 21, 4724–4730.
- 49W. Z. Bao, Z. A. Zhang, Y. H. Qu, C. K. Zhou, X. W. Wang, J. Li, J. Alloys Compd. 2014, 582, 334–340.
- 50F. Wu, J. Z. Chen, R. J. Chen, S. X. Wu, L. Li, S. Chen, T. Zhao, J. Phys. Chem. C 2011, 115, 6057–6063.
- 51J. Gun, A. Goifman, I. Shkrob, A. Kamyshny, B. Ginzburg, O. Hadas, I. Dor, A. D. Modestov, O. Lev, Environ. Sci. Technol. 2000, 34, 4741–4746.
- 52
- 52aF. W. Küster, E. Heberlein, Z. Anorg. Chem. 1905, 43, 53–84;
- 52bR. H. Arntson, F. W. Dickson, G. Tunell, Science 1958, 128, 716–718.
- 53R. Steudel, Top. Curr. Chem. 2003, 231, 127–152.
- 54
- 54aW. Giggenbach, Inorg. Chem. 1972, 11, 1201–1207;
- 54bA. Kamyshny, Jr., J. Gun, D. Rizkov, T. Voitsekovski, O. Lev, Environ. Sci. Technol. 2007, 41, 2395–2400.
- 55
- 55aA. Kamyshny, Jr., A. Goifman, J. Gun, D. Rizkov, O. Lev, Environ. Sci. Technol. 2004, 38, 6633–6644;
- 55bA. Kamyshny, Jr., I. Ekeltchik, J. Gun, O. Lev, Anal. Chem. 2006, 78, 2631–2639;
- 55cA. Kamyshny, Jr., J. Gun, D. Rizkov, T. Voitsekovski, O. Lev, Environ. Sci. Technol. 2007, 41, 2395–2400.
- 56E. J. Goethals, V. Moss, G. H. Schmid, Sulfur-Containing Polymers, Thieme, Stuttgart, 1977.
- 57J. S. Jorczak, E. M. Fettes, Ind. Eng. Chem. 1951, 43, 324–328.
- 58M. R. Kalaee, M. H. N. Famili, H. Mahdavi, Polym.-Plast. Technol. Eng. 2009, 48, 627–632.
- 59
- 59aM. L. Hallensleben, Eur. Polym. J. 1977, 13, 437–440;
- 59bM. L. Hallensleben, J. Polym. Sci. Polym. Lett. Ed. 1977, 15, 619–622.
- 60K. Kishore, T. Mukundan, Nature 1986, 324, 130–131.
- 61K. Kishore, K. Ganesh, Macromolecules 1993, 26, 4700–4705.
- 62K. Ganesh, K. Kishore, Macromolecules 1995, 28, 2483–2490.
- 63K. S. Murthy, K. Ganesh, K. Kishore, Polymer 1996, 37, 5541–5543.
- 64K. Ganesh, R. Latha, K. Kishore, B. George, K. N. Ninan, J. Appl. Polym. Sci. 1997, 66, 2149–2156.
10.1002/(SICI)1097-4628(19971219)66:11<2149::AID-APP11>3.0.CO;2-X CAS Web of Science® Google Scholar
- 65L. Ramakrishnan, K. Sivaprakasam, J. Polym. Res. 2009, 16, 623–635.
- 66A. Ohno, S. Oae, K. Griesbaum in Organic Chemistry of Sulfur (Ed.: ), Plenum, London, 1977.
- 67L. Ramakrishnan, K. Sivaprakasam, Polymer 2005, 46, 5506–5513.
- 68S. Penczek, R. Slazak, A. Duda, Nature 1978, 273, 738–739.
- 69
- 69aS. Penczek, R. Slazak, A. Duda, Nature 1979, 280, 846–847;
- 69bA. D. Aliev, Z. Zhumabaev, B. A. Krentsel, Nature 1979, 280, 846–846.
- 70E. B. Krein, Z. Aizenshtat, J. Org. Chem. 1993, 58, 6103–6108.
- 71
- 71aI. T. Horvath, J. Rabai, Science 1994, 266, 72–75;
- 71bJ. A. Gladysz, D. P. Curran, I. T. Horváth, Handbook of Fluorous Chemistry, Wiley-VCH, Weinheim, 2004.
10.1002/3527603905 Google Scholar
- 72V. H. Dalvi, P. J. Rossky, Proc. Natl. Acad. Sci. USA 2010, 107, 13603–13607.
- 73J. Lim, T. M. Swager, Angew. Chem. Int. Ed. 2010, 49, 7486–7488; Angew. Chem. 2010, 122, 7648–7650.
- 74R. Steudel, Phosphorus Sulfur Silicon Relat. Elem. 1983, 16, 251–255.
- 75R. Steudel, R. Strauss, L. Koch, Angew. Chem. Int. Ed. Engl. 1985, 24, 59–60; Angew. Chem. 1985, 97, 58–59.
- 76J. Germain, M. Rolandi, S. A. Backer, J. M. J. Fréchet, Adv. Mater. 2008, 20, 4526–4529.
- 77
- 77aW. E. Mochel, J. H. Peterson, J. Am. Chem. Soc. 1949, 71, 1426–1432;
- 77bY. Miyata, M. Sawada, Polymer 1988, 29, 1683–1688;
- 77cY. Miyata, M. Sawada, Polymer 1988, 29, 1495–1500;
- 77dL. B. Blight, B. R. Currell, B. J. Nash, R. T. M. Scott, C. Stillo, Br. Polym. J. 1980, 12, 5–11.
- 78Y. Ding, A. S. Hay, J. Polym. Sci. Part A 1997, 35, 2961–2968.
- 79W. J. Chung, A. G. Simmonds, J. J. Griebel, E. T. Kim, H. S. Suh, I. B. Shim, R. S. Glass, D. A. Loy, P. Theato, Y. E. Sung, K. Char, J. Pyun, Angew. Chem. Int. Ed. 2011, 50, 11409–11412; Angew. Chem. 2011, 123, 11611–11614.
- 80E. T. Kim, W. J. Chung, J. Lim, P. Johe, R. S. Glass, J. Pyun, K. Char, Polym. Chem. 2014, 5, 3617–3623.
- 81K. Wang, M. Groom, R. Sheridan, S. Z. Zhang, E. Block, J. Sulfur Chem. 2013, 34, 55–66.
- 82W. J. Chung, J. J. Griebel, E. T. Kim, H. Yoon, A. G. Simmonds, H. J. Ji, P. T. Dirlam, R. S. Glass, J. J. Wie, N. A. Nguyen, B. W. Guralnick, J. Park, A. Somogyi, P. Theato, M. E. Mackay, Y. E. Sung, K. Char, J. Pyun, Nat. Chem. 2013, 5, 518–524.
- 83J. J. Griebel, G. Li, R. S. Glass, K. Char, J. Pyun, J. Polym. Sci. Part A 2014, published online (DOI: ).
- 84A. G. Simmonds, J. J. Griebel, J. Park, K. R. Kim, W. J. Chung, V. P. Oleshko, J. Kim, E. T. Kim, R. S. Glass, C. L. Soles, Y. E. Sung, K. Char, J. Pyun, ACS Macro Lett. 2014, 3, 229–232.
- 85Z. J. Sun, M. Xiao, S. J. Wang, D. M. Han, S. Q. Song, G. H. Chen, Y. Z. Meng, J. Mater. Chem. A 2014, 2, 9280–9286.
- 86
- 86aL. W. Ji, M. M. Rao, H. M. Zheng, L. Zhang, Y. C. Li, W. H. Duan, J. H. Guo, E. J. Cairns, Y. G. Zhang, J. Am. Chem. Soc. 2011, 133, 18522–18525;
- 86bM. K. Song, Y. G. Zhang, E. J. Cairns, Nano Lett. 2013, 13, 5891–5899.
- 87L. W. Ji, M. M. Rao, S. Aloni, L. Wang, E. J. Cairns, Y. G. Zhang, Energy Environ. Sci. 2011, 4, 5053–5059.
- 88S. Evers, L. F. Nazar, Chem. Commun. 2012, 48, 1233–1235.
- 89J. A. Gladysz, V. K. Wong, B. S. Jick, Tetrahedron 1979, 35, 2329–2335.
- 90C. Y. Nan, Z. Lin, H. G. Liao, M. K. Song, Y. D. Li, E. J. Cairns, J. Am. Chem. Soc. 2014, 136, 4659–4663.
- 91C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706–8715.
- 92T. Tsuda, A. Takeda, Chem. Commun. 1996, 1317–1318.
- 93
- 93aN. Ponnuswamy, F. B. L. Cougnon, J. M. Clough, G. D. Pantos, J. K. M. Sanders, Science 2012, 338, 783–785;
- 93bJ. W. Li, J. M. A. Carnall, M. C. A. Stuart, S. Otto, Angew. Chem. Int. Ed. 2011, 50, 8384–8386; Angew. Chem. 2011, 123, 8534–8536.