Characterization of a Multicomponent Lithium Lithiate from a Combined X-Ray Diffraction, NMR Spectroscopy, and Computational Approach†
Dr. Ann-Christin Pöppler
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Markus Granitzka
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Regine Herbst-Irmer
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Yu-Sheng Chen
University of Chicago, 9700 S. Cass Avenue, Argonne, IL 60539 (USA)
Search for more papers by this authorProf. Dr. Bo B. Iversen
Center for Materials Crystallography, Department of Chemistry and iNano, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark)
Search for more papers by this authorDr. Michael John
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Ricardo A. Mata
Institut für Physikalische Chemie der Universität Göttingen, Tammannstrasse 6, 37077 Göttingen (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Dietmar Stalke
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)Search for more papers by this authorDr. Ann-Christin Pöppler
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Markus Granitzka
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Regine Herbst-Irmer
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Yu-Sheng Chen
University of Chicago, 9700 S. Cass Avenue, Argonne, IL 60539 (USA)
Search for more papers by this authorProf. Dr. Bo B. Iversen
Center for Materials Crystallography, Department of Chemistry and iNano, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark)
Search for more papers by this authorDr. Michael John
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Ricardo A. Mata
Institut für Physikalische Chemie der Universität Göttingen, Tammannstrasse 6, 37077 Göttingen (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Dietmar Stalke
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)
Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany)Search for more papers by this authorWe are grateful to the DNRF funded Centre of Materials Crystallography (DNRF93). ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under Grand NSF/CHE-1346572. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science and the Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We appreciate chemical donations from Rockwood Lithium.
Graphical Abstract
Aggregation is more than the sum of its parts! An unusual lithium lithiate, made up from three carbanions, two lithium cations, and a single donor base in the anion and a single lithium cation, and coordinated by two donor base molecules, was investigated in a combined study including X-ray diffraction, NMR spectroscopy, and computational approaches in solution and the solid state. Only the combination of this multitude of methods provides a firm picture of the whole.
Abstract
An unusual lithium lithiate [Li(diglyme)2][(diglyme)Li2(C4H3S)3], made up from three carbanions, two lithium cations, and a single donor base molecule in the anion and a single lithium cation, coordinated by two donor base molecules, is investigated in a combined study including X-ray diffraction, NMR spectroscopy and computational approaches in solution and the solid state. While the multicomponent lithiate is the only species present in the solid state, solution NMR spectroscopy and computational methods were employed to identify a second species in solution. The dimer [(diglyme)Li(C4H3S)]2 coexists with the lithiate in solution in a 1:1 ratio, the more the higher the polarity of the solvent is. Only the combination of this multitude of methods provides a firm picture of the whole.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201406320_sm_miscellaneous_information.pdf3.6 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aE. Carl, D. Stalke in Lithium Compounds in Organic Synthesis (Eds.: ), Wiley-VCH, Weinheim, 2014, pp. 1–32;
10.1002/9783527667512.ch1 Google Scholar
- 1bH. J. Reich, Chem. Rev. 2013, 113, 7130–7178;
- 1cV. H. Gessner, C. Däschlein, C. Strohmann, Chem. Eur. J. 2009, 15, 3320–3334;
- 1dD. B. Collum, A. J. McNeil, A. Ramirez, Angew. Chem. Int. Ed. 2007, 46, 3002–3017; Angew. Chem. 2007, 119, 3060–3077;
- 1eT. Stey, D. Stalke in The Chemistry of Organolithium Compounds (Eds.: ), Wiley, Chichester, 2004, pp. 47–120;
10.1002/047002111X.ch2 Google Scholar
- 1fM. C. Whisler, S. MacNeil, V. Snieckus, P. Beak, Angew. Chem. Int. Ed. 2004, 43, 2206–2225; Angew. Chem. 2004, 116, 2256–2276;
- 1gB. Lucht, D. B. Collum, Acc. Chem. Res. 1999, 32, 1035–1042.
- 2R. M. Fuoss, C. A. Kraus, J. Am. Chem. Soc. 1933, 55, 2387–2399.
- 3
- 3aG. Wittig, F. J. Meyer, G. Lange, Justus Liebigs Ann. Chem. 1951, 571, 167–201;
- 3bG. Wittig, Angew. Chem. 1958, 70, 65–71.
- 4
- 4aC. Eaborn, P. B. Hitchcock, J. D. Smith, A. C. Sullivan, J. Chem. Soc. Chem. Commun. 1983, 827–828;
- 4bU. J. Bildmann, G. Müller, Organometallics 2001, 20, 1689–1691.
- 5
- 5aB. L. Lucht, M. A. Bernstein, J. F. Remenar, D. B. Collum, J. Am. Chem. Soc. 1996, 118, 10707–10718;
- 5bJ. Arnold, J. Chem. Soc. Chem. Commun. 1990, 976–978;
- 5cN. H. Buttrus, C. Eaborn, P. B. Hitchcock, J. D. Smith, J. G. Stamper, A. C. Sullivan, J. Chem. Soc. Chem. Commun. 1986, 969–970.
- 6
- 6aH. Gornitzka, D. Stalke, Organometallics 1994, 13, 4398–4405;
- 6bP. P. Power, Acc. Chem. Res. 1988, 21, 147–153;
- 6cM. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1985, 107, 2174–2175;
- 6dP. P. Power, X. Xiaojie, J. Chem. Soc. Chem. Commun. 1984, 358–359.
- 7
- 7aH. J. Reich, W. H. Sikorski, B. Ö. Gudmundsson, R. R. Dykstra, J. Am. Chem. Soc. 1998, 120, 4035–4036;
- 7bF. E. Romesberg, D. B. Collum, J. Am. Chem. Soc. 1994, 116, 9198–9202;
- 7cF. E. Romesberg, D. B. Collum, J. Am. Chem. Soc. 1992, 114, 2112–2121;
- 7dL. M. Jackman, L. M. Scarmoutzos, W. Porter, J. Am. Chem. Soc. 1987, 109, 6524–6525.
- 8For examples, see:
- 8aL. A. Paquette, W. Bauer, M. R. Sivik, M. Bühl, M. Feigel, P. v. R. Schleyer, J. Am. Chem. Soc. 1990, 112, 8776–8789;
- 8bS. Harder, M. H. Prosenc, Angew. Chem. Int. Ed. Engl. 1994, 33, 1744–1766; Angew. Chem. 1994, 106, 1830–1832;
- 8cJ. Wessel, E. Lork, R. Mews, Angew. Chem. Int. Ed. Engl. 1995, 34, 2376–2378; Angew. Chem. 1995, 107, 2565–2567;
- 8dR. Michel, R. Herbst-Irmer, D. Stalke, Organometallics 2011, 30, 4379–4386;
- 8eD. Stalke, Angew. Chem. Int. Ed. Engl. 1994, 33, 2168–2171; Angew. Chem. 1994, 106, 2256–2259;
- 8fL. M. Jackman, L. M. Scarmoutzos, B. D. Smith, P. G. Williard, J. Am. Chem. Soc. 1988, 110, 6058–6063.
- 9
- 9aH. Gornitzka, D. Stalke, Angew. Chem. Int. Ed. Engl. 1994, 33, 693–695; Angew. Chem. 1994, 106, 695–698;
- 9bF. Pauer, J. Rocha, D. Stalke, J. Chem. Soc. Chem. Commun. 1991, 1477–1479;
- 9cD. Barr, W. Clegg, R. E. Mulvey, R. Snaith, J. Chem. Soc. Chem. Commun. 1984, 226–227;
- 9dA. G. Avent, C. Eaborn, P. B. Hitchcock, G. A. Lawless, P. D. Lickiss, M. Mallien, J. D. Smith, A. D. Webb, B. Wrackmeyer, J. Chem. Soc. Dalton Trans. 1993, 3259–3264;
- 9eR. H. Cox, H. W. J. Terry, J. Magn. Reson. 1974, 14, 317–322;
- 9fG. Fraenkel, M. P. Hallden-Abberton, J. Am. Chem. Soc. 1981, 103, 5657–5664.
- 10H. J. Reich, W. H. Sikorski, J. Org. Chem. 1999, 64, 14–15.
- 11
- 11aA. C. Hoepker, D. B. Collum, J. Org. Chem. 2011, 76, 7985–7993;
- 11bX. Sun, D. B. Collum, J. Am. Chem. Soc. 2000, 122, 2452–2458;
- 11cJ. F. Remenar, D. B. Collum, J. Am. Chem. Soc. 1998, 120, 4081–4086;
- 11dA. C. Jones, A. W. Sanders, W. H. Sikorski, K. L. Jansen, H. J. Reich, J. Am. Chem. Soc. 2008, 130, 6060–6061;
- 11eH. J. Reich, W. H. Sikorski, A. W. Sanders, A. C. Jones, K. N. Plessel, J. Org. Chem. 2009, 74, 719–729;
- 11fF. E. Romesberg, D. B. Collum, J. Am. Chem. Soc. 1995, 117, 2166–2178.
- 12M. Granitzka, A.-C. Pöppler, E. K. Schwarze, D. Stern, T. Schulz, M. John, R. Herbst-Irmer, S. K. Pandey, D. Stalke, J. Am. Chem. Soc. 2012, 134, 1344–1351.
- 13Cambridge Structural Database, v5.34 (November 2012), Cambridge Crystallographic Data Centre, Cambridge, 2012.
- 14
- 14aR. E. Mulvey, Acc. Chem. Res. 2009, 42, 743–755;
- 14bR. E. Mulvey, F. Mongin, M. Uchiyama, Y. Kondo, Angew. Chem. Int. Ed. 2007, 46, 3802–3824; Angew. Chem. 2007, 119, 3876–3899;
- 14cD. R. Armstrong, W. Clegg, S. H. Dale, E. Hevia, L. M. Hogg, G. W. Honeyman, R. E. Mulvey, Angew. Chem. Int. Ed. 2006, 45, 3775–3778; Angew. Chem. 2006, 118, 3859–3862;
- 14dV. L. Blair, A. R. Kennedy, R. E. Mulvey, C. T. O’Hara, Chem. Eur. J. 2010, 16, 8600–8604.
- 15S. Freitag, W. Kolodziejski, F. Pauer, D. Stalke, J. Chem. Soc. Dalton Trans. 1993, 3479–3488.
- 16A.-C. Pöppler, S. Frischkorn, D. Stalke, M. John, ChemPhysChem 2013, 14, 3103–3107.
- 17A.-C. Pöppler, H. Keil, D. Stalke, M. John, Angew. Chem. Int. Ed. 2012, 51, 7843–7846; Angew. Chem. 2012, 124, 7963–7967.
- 18
- 18aA. D. Becke, Phys. Rev. A 1988, 38, 3098–3100;
- 18bS. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104–154119;
- 18cF. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- 19A. Klamt, G. J. Schüürman, J. Chem. Soc. Perkin Trans. 2 1993, 799–805.
- 20H.-J. Werner, M. Schütz, J. Chem. Phys. 2011, 135, 144116–144115.
- 21T. H. Dunning, J. Chem. Phys. 1989, 90, 1007–1023.
- 22B. Prascher, D. Woon, K. Peterson, T. Dunning, Jr., A. Wilson, Theor. Chem. Acc. 2011, 128, 69–82.
- 23ORCA, v. 2.8, F. Neese, U. Becker, D. Ganiouchine, S. Koßmann, T. Petrenko, C. Riplinger, F. Wennmohs, University of Bonn (Germany), 2010.
- 24H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby and M. Schütz, et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net.
- 25
- 25aD. Stalke, Chem. Soc. Rev. 1998, 27, 171–178;
- 25bT. Kottke, D. Stalke, J. Appl. Crystallogr. 1993, 26, 615–619;
- 25cT. Kottke, D. Stalke, J. Appl. Crystallogr. 1996, 29, 465–468.
- 26T. Schulz, K. Meindl, D. Leusser, D. Stern, J. Graf, C. Michaelsen, M. Ruf, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2009, 42, 885–891.
- 27G. M. Sheldrick, SADABS, 2008/2; Universität Göttingen, 2008.
- 28
- 28aG. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467–473;
- 28bG. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112–122;
- 28cP. Müller, R. Herbst-Irmer, A. L. Spek, T. R. Schneider, M. R. Sawaya in Crystal Structure Refinement-A Crystallographer’s Guide to SHELXL, IUCr Texts on Crystallography, Vol. 8 (Ed.: ), Oxford University Press, Oxford, UK, 2006;
10.1093/acprof:oso/9780198570769.001.0001 Google Scholar
- 28dC. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281–1284.
- 29CCDC 1008655 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.