Formation of Polydopamine Nanofibers with the Aid of Folic Acid†
Xiang Yu
Department of Chemistry, Renmin University of China, Beijing 100872 (P. R. China)
Search for more papers by this authorHailong Fan
Department of Chemistry, Renmin University of China, Beijing 100872 (P. R. China)
Search for more papers by this authorLe Wang
Department of Chemistry, Renmin University of China, Beijing 100872 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhaoxia Jin
Department of Chemistry, Renmin University of China, Beijing 100872 (P. R. China)
Department of Chemistry, Renmin University of China, Beijing 100872 (P. R. China)Search for more papers by this authorXiang Yu
Department of Chemistry, Renmin University of China, Beijing 100872 (P. R. China)
Search for more papers by this authorHailong Fan
Department of Chemistry, Renmin University of China, Beijing 100872 (P. R. China)
Search for more papers by this authorLe Wang
Department of Chemistry, Renmin University of China, Beijing 100872 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhaoxia Jin
Department of Chemistry, Renmin University of China, Beijing 100872 (P. R. China)
Department of Chemistry, Renmin University of China, Beijing 100872 (P. R. China)Search for more papers by this authorWe gratefully acknowledge the National Natural Science Foundation of China (grants 21374132 and 51173201) for financial support. We thank Z. X. Nie and H. H. Liu at the Institute of Chemistry, Chinese Academy of Science, for MALDI-TOF characterization.
Graphical Abstract
The magic of folic acid: When the oxidative self-polymerization of dopamine (turquoise) was conducted in the presence of folic acid (yellow), novel aggregated nanostructures of polydopamine (PDA) were generated: nanobelts and nanofibers (see SEM image). Supramolecular interactions between folic acid and protomolecules of PDA, such as π–π interactions and hydrogen bonding, appear to contribute to the formation of the nanobelts and nanofibers.
Abstract
Polydopamine (PDA) generated by the oxidative self-polymerization of dopamine shows great potential for surface modification. Observed PDA nanostructures are nanoparticles and thin films. The formation mechanism of PDA is still unclear; thus, the manipulation of PDA nanostructures is a big challenge. In this study, we first demonstrated that folic acid shows a dramatic effect on the PDA nanostructure: New aggregated nanostructures of PDA, nanobelts and nanofibers, were generated in a dopamine/folic acid system. We hypothesized that folic acid may be involved in the stacking of protomolecules of PDA by π–π interactions and hydrogen bonding. Herein we describe the first experimental strategy to manipulate the aggregation of PDA by using small molecules. This study not only provides a new method for generating PDA nanofibers, which are proposed bioorganic electronic materials, but also a possible way to understand the formation mechanism of PDA and its analogues in nature, melanins.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201404947_sm_miscellaneous_information.pdf1.6 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Prota, Melanins and Melanogenesis, Academic Press, San Diego, 1992;
- 1bG. Prota, Pigm. Cell Res. 2000, 13, 283.
- 2
- 2aP. Meredith, T. Sarna, Pigm. Cell Res. 2006, 19, 572;
- 2bR. Sarangarajan, S. P. Apte, Ophthalmic Res. 2005, 37, 136;
- 2cP. Meredith, B. J. Powell, J. Riesz, S. P. Nighswander-Rempel, M. R. Pederson, E. G. Moore, Soft Matter 2006, 2, 37.
- 3
- 3aA. B. Mostert, B. J. Powell, F. L. Pratt, G. R. Hanson, T. Sarna, I. R. Gentle, P. Meredith, Proc. Natl. Acad. Sci. USA 2012, 109, 8943;
- 3bM. d’Ischia, A. Napolitano, A. Pezzella, P. Meredith, T. Sarna, Angew. Chem. 2009, 121, 3972;
10.1002/ange.200803786 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 3914;
- 3cJ. P. Bothma, J. de Boor, U. Divakar, P. E. Schwenn, P. Meredith, Adv. Mater. 2008, 20, 3539;
- 3dB. Oetzel, F. Ortmann, L. Matthes, F. Tandetzky, F. Bechstedt, K. Hannewald, Phys. Rev. B 2012, 86, 195407.
- 4
- 4aK. B. Stark, J. M. Gallas, G. W. Zajac, J. T. Golab, S. Gidanian, T. McIntire, P. J. Farmer, J. Phys. Chem. B 2005, 109, 1970;
- 4bG. Zajac, W. J. M. Gallas, J. Cheng, M. Eisner, S. C. Moss, A. E. Alvarado-Swaisgood, Biochim. Biophys. Acta Gen. Subj. 1994, 1199, 271;
- 4cY. Liu, J. D. Simon, Pigm. Cell Res. 2003, 16, 72;
- 4dC. M. R. Clancy, J. D. Simon, Biochemistry 2001, 40, 13353.
- 5
- 5aM. Jastrzebska, I. Mróz, B. Barwiński, R. Wrzalik, S. Boryczka, J. Mater. Sci. 2010, 45, 5302;
- 5bR. McQueenie, J. Sutter, J. Karolin, D. J. S. Birch, J. Biomed. Opt. 2012, 17, 0750011;
- 5cR. McQueenie, PhD thesis, University of Strathclyde (UK), 2011.
- 6N. Holten-Andersen, M. J. Harrington, H. Birkedal, B. P. Lee, P. B. Messersmith, K. Y. C. Lee, J. H. Waitee, Proc. Natl. Acad. Sci. USA 2011, 108, 2651.
- 7
- 7aS. M. Kang, N. S. Hwang, J. Yeom, S. Y. Park, P. B. Messersmith, I. S. Choi, R. Langer, D. G. Anderson, H. Lee, Adv. Funct. Mater. 2012, 22, 2949;
- 7bH. Lee, J. Rho, P. B. Messersmith, Adv. Mater. 2009, 21, 431;
- 7cH. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318, 426;
- 7dK. Yang, J. S. Lee, J. Kim, Y. B. Lee, H. Shin, S. H. Um, J. B. Kim, K. I. Park, H. Lee, S.-W. Cho, Biomaterials 2012, 33, 6952;
- 7eM.-H. Ryou, Y. M. Lee, J.-K. Park, J. W. Choi, Adv. Mater. 2011, 23, 3066;
- 7fE. Ko, K. Yang, J. Shin, S.-W. Cho, Biomacromolecules 2013, 14, 3202;
- 7gQ. Ye, F. Zhou, W. M. Liu, Chem. Soc. Rev. 2011, 40, 4244;
- 7hM. E. Lynge, R. van der Westen, A. Postma, B. Städler, Nanoscale 2011, 3, 4916;
- 7iX. S. Liu, J. M. Cao, H. Li, J. Y. Li, Q. Jin, K. F. Ren, J. Ji, ACS Nano 2013, 7, 9384.
- 8
- 8aK.-Y. Ju, Y. Lee, S. Lee, S. B. Park, J.-K. Lee, Biomacromolecules 2011, 12, 625;
- 8bX. Y. Zhang, S. Q. Wang, L. X. Xu, L. Feng, Y. Ji, L. Tao, S. X. Li, Y. Wei, Nanoscale 2012, 4, 5581.
- 9
- 9aJ. W. Cui, Y. Yan, G. K. Such, K. Liang, C. J. Ochs, A. Postma, F. Caruso, Biomacromolecules 2012, 13, 2225;
- 9bK. C. L. Black, J. Yi, J. G. Rivera, D. C. Zelasko-Leon, P. B. Messersmith, Nanomedicine 2013, 8, 17;
- 9cY. M. Shin, Y. B. Lee, S. J. Kim, J. K. Kang, J.-C. Park, W. Jang, H. Shin, Biomacromolecules 2012, 13, 2020;
- 9dC. K. Poh, Z. Shi, T. Y. Lim, K. G. Neoh, W. Wang, Biomaterials 2010, 31, 1578.
- 10M. R. Chedekel, E. J. Land, A. Thompson, T. G. Truscott, J. Chem. Soc. Chem. Commun. 1984, 17, 1170.
- 11A. H. Thomas, G. Suarez, F. M. Cabrerizo, R. Martino, A. L. Capparelli, J. Photochem. Photobiol. A 2000, 135, 147.
- 12F. Bernsmann, A. Ponche, C. Ringwald, J. Hemmerlé, J. Raya, B. Bechinger, J.-C. Voegel, P. Schaaf, V. Ball, J. Phys. Chem. C 2009, 113, 8234.
- 13
- 13aJ. Liebscher, R. Mrowczynski, H. A. Scheidt, C. Filip, N. D. Hadade, R. Turcu, A. Bende, S. Beck, Langmuir 2013, 29, 10539;
- 13bM. B. Clark, J. A. Gardella, T. M. Schultz, D. G. Patil, L. Salvati, Anal. Chem. 1990, 62, 949.
- 14R. A. Zangmeister, T. A. Morris, M. J. Tarlov, Langmuir 2013, 29, 8619.
- 15
- 15aM. Zhang, X. H. Zhang, X. W. He, L. X. Chen, Y. K. Zhang, Nanoscale 2012, 4, 3141;
- 15bS. A. Centeno, J. Shamir, J. Mol. Struct. 2008, 873, 149.
- 16A. Pezzella, A. Napolitano, M. d’Ischia, G. Prota, R. Seraglia, P. Traldi, Rapid Commun. Mass Spectrom. 1997, 11, 368.
- 17H. Xu, X. Liu, G. Su, B. Zhang, D. Wang, Langmuir 2012, 28, 13060.
- 18N. F. Della Vecchia, R. Avolio, M. Alfè, M. E. Errico, A. Napolitano, M. d’Ischia, Adv. Funct. Mater. 2013, 23, 1331.
- 19K. B. Stark, J. M. Gallas, G. W. Zajac, M. Eisner, J. T. Golab, J. Phys. Chem. B 2003, 107, 11558.
- 20
- 20aK. C. Littrell, J. M. Gallas, G. W. Zajac, P. Thiyagarajan, Photochem. Photobiol. 2003, 77, 115;
- 20bM. Arzillo, G. Mangiapia, A. Pezzella, R. K. Heenan, A. Radulescu, L. Paduano, M. d’Ischia, Biomacromolecules 2012, 13, 2379;
- 20cX. Yu, H. L. Fan, Y. Liu, Z. J. Shi, Z. X. Jin, Langmuir 2014, 30, 5497.
- 21
- 21aF. Ciuchi, G. Di Nicola, H. Franz, G. Gottarelli, P. Mariani, M. G. Ponzi Bossi, G. P. Spada, J. Am. Chem. Soc. 1994, 116, 7064;
- 21bG. P. Spada, A. Carcuro, F. P. Colonna, A. Garbesi, G. Gottarelli, Liq. Cryst. 1988, 3, 651;
- 21cP. Mariani, C. Mazabard, A. Garbesi, G. P. Spada, J. Am. Chem. Soc. 1989, 111, 6369;
- 21dS. Bonazzi, M. Capobianco, M. M. De Morais, A. Garbesi, G. Gottarelli, P. Mariani, M. G. Ponzi Bossi, G. P. Spada, L. Tondelli, J. Am. Chem. Soc. 1991, 113, 5809;
- 21eK. Kanie, M. Nishii, T. Yasuda, T. Taki, S. Ujiie, T. Kato, J. Mater. Chem. 2001, 11, 2875;
- 21fR. Atluri, N. Hedin, A. E. Garcia-Bennett, J. Am. Chem. Soc. 2009, 131, 3189;
- 21gR. Atluri, M. N. Iqbal, Z. Bacsik, N. Hedin, L. A. Villaescusa, A. E. Garcia-Bennett, Langmuir 2013, 29, 12003.
- 22Y. Y. He, X. C. Wang, P. K. Jin, B. Zhao, X. Y. Fan, Spectrochim. Acta Part A 2009, 72, 876.
- 23Z. Yao, C. Li, G. Shi, Langmuir 2008, 24, 12829.
- 24L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P. Sijbesma, Chem. Rev. 2001, 101, 4071.
- 25
- 25aJ. U. Sutter, T. Bidlakova, J. Karolin, D. J. S. Birch, Appl. Phys. Lett. 2012, 100, 113701;
- 25bJ. I. N. Cheng, S. C. Moss, M. Eisner, Pigm. Cell Res. 1994, 7, 263;
- 25cC.-T. Chen, V. Ball, J. J. de Almeida Gracio, M. K. Singh, V. Toniazzo, D. Ruch, M. J. Buehler, ACS Nano 2013, 7, 1524.
- 26A. Saha, S. Bolisetty, S. Handschin, R. Mezzenga, Soft Matter 2013, 9, 10239.
- 27
- 27aE. Kaxiras, A. Tsolakidis, G. Zonios, S. Meng, Phys. Rev. Lett. 2006, 97, 218102;
- 27bS. Meng, E. Kaxiras, Biophys. J. 2008, 94, 2095.
- 28N. G. Jablonski, G. Chaplin, Proc. Natl. Acad. Sci. USA 2010, 107, 8962.
- 29K. U. Schallreuter, S. Kothari, B. Chavan, J. D. Spencer, Exp. Dermatol. 2008, 17, 395.
Citing Literature
Special Issue:Nanotechnology & Nanomaterials, Nanotoxicology & Nanomedicine
November 10, 2014
Pages 12600-12604