Volume 53, Issue 46 pp. 12618-12623
Communication

A Chemoenzymatic Approach to Protein Immobilization onto Crystalline Cellulose Nanoscaffolds

Christina Uth

Christina Uth

Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt (Germany)

Search for more papers by this author
Stefan Zielonka

Stefan Zielonka

Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt (Germany)

Search for more papers by this author
Sebastian Hörner

Sebastian Hörner

Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt (Germany)

Search for more papers by this author
Dr. Nicolas Rasche

Dr. Nicolas Rasche

Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt (Germany)

Search for more papers by this author
Andreas Plog

Andreas Plog

Center of Smart Interfaces, Technische Universität Darmstadt (Germany)

Search for more papers by this author
Dr. Hannes Orelma

Dr. Hannes Orelma

Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt (Germany)

Search for more papers by this author
Dr. Olga Avrutina

Dr. Olga Avrutina

Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt (Germany)

Search for more papers by this author
Dr. Kai Zhang

Corresponding Author

Dr. Kai Zhang

Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt (Germany)

Kai Zhang, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt (Germany)

Harald Kolmar, Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt (Germany)

Search for more papers by this author
Prof. Dr. Harald Kolmar

Corresponding Author

Prof. Dr. Harald Kolmar

Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt (Germany)

Kai Zhang, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt (Germany)

Harald Kolmar, Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt (Germany)

Search for more papers by this author
First published: 28 July 2014
Citations: 64

We thank the Hessische Exzellenz Initiative LOEWE—Forschungscluster SOFT CONTROL and the Kooperative Forschungskolleg NANOKAT and DFG priority program 1623 for financial support and Brent Dorr (Harvard University) for providing the plasmid for the sortase expression.

Graphical Abstract

A modular approach was used for site-directed, bioorthogonal protein immobilization. The combination of enzyme-mediated ligation with highly efficient oxime ligation makes it possible to decorate sustainable nanocellulose platforms with fully functional proteins from different families.

Abstract

The immobilization of bioactive molecules onto nanocellulose leads to constructs that combine the properties of the grafted compounds with the biocompatibility and low cytotoxicity of cellulose carriers and the advantages given by their nanometer dimensions. However, the methods commonly used for protein grafting suffer from lack of selectivity, long reaction times, nonphysiological pH ranges and solvents, and the necessity to develop a tailor-made reaction strategy for each individual case. To overcome these restrictions, a generic two-step procedure was developed that takes advantage of the highly efficient oxime ligation combined with enzyme-mediated protein coupling onto the surface of peptide-modified crystalline nanocellulose. The described method is based on efficient and orthogonal transformations, requires no organic solvents, and takes place under physiological conditions. Being site-directed and regiospecific, it could be applied to a vast number of functional proteins.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.