Highly Ordered and Highly Aligned Two-Dimensional Binary Superlattice of a SWNT/Cylindrical-Micellar System†
Sung-Hwan Lim
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Republic of Korea) http://neutron.kaist.ac.kr
Search for more papers by this authorDr. Hyung-Sik Jang
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Republic of Korea) http://neutron.kaist.ac.kr
Search for more papers by this authorJae-Min Ha
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Republic of Korea) http://neutron.kaist.ac.kr
Search for more papers by this authorDr. Tae-Hwan Kim
Neutron Science Division, Department of Reactor Utilization and Development, Korea Atomic Energy Research Institute, Daejeon 305-353 (Republic of Korea)
Search for more papers by this authorDr. Pawel Kwasniewski
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)
Search for more papers by this authorDr. Theyencheri Narayanan
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)
Search for more papers by this authorDr. Kyeong Sik Jin
Pohang Accelerator Laboratory, University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorCorresponding Author
Prof. Sung-Min Choi
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Republic of Korea) http://neutron.kaist.ac.kr
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Republic of Korea) http://neutron.kaist.ac.krSearch for more papers by this authorSung-Hwan Lim
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Republic of Korea) http://neutron.kaist.ac.kr
Search for more papers by this authorDr. Hyung-Sik Jang
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Republic of Korea) http://neutron.kaist.ac.kr
Search for more papers by this authorJae-Min Ha
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Republic of Korea) http://neutron.kaist.ac.kr
Search for more papers by this authorDr. Tae-Hwan Kim
Neutron Science Division, Department of Reactor Utilization and Development, Korea Atomic Energy Research Institute, Daejeon 305-353 (Republic of Korea)
Search for more papers by this authorDr. Pawel Kwasniewski
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)
Search for more papers by this authorDr. Theyencheri Narayanan
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)
Search for more papers by this authorDr. Kyeong Sik Jin
Pohang Accelerator Laboratory, University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorCorresponding Author
Prof. Sung-Min Choi
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Republic of Korea) http://neutron.kaist.ac.kr
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Republic of Korea) http://neutron.kaist.ac.krSearch for more papers by this authorThis research was supported by NRF grants funded by the MEST of the Korean government (No. 2014R1A2A1A05007109 and 2011-0031931) and the KAERI grant. We acknowledge the HANARO Neutron Research Center, the PAL, and the ESRF for providing access to the beamlines used in this study. SWNT=single-walled carbon nanotube.
Graphical Abstract
Binary superlattice of 1D nanoobjects: A highly ordered intercalated hexagonal binary superlattice was formed when hydrophilically functionalized SWNTs were added to a hexagonally packed C12E5 cylindrical-micellar system. In this binary superlattice, a hexagonal array of SWNTs is embedded in a honeycomb lattice of C12E5 cylinders (see picture), thus maximizing the free-volume entropies for both types of cylinders.
Abstract
We report a highly ordered intercalated hexagonal binary superlattice of hydrophilically functionalized single-walled carbon nanotubes (p-SWNTs) and surfactant (C12E5) cylindrical micelles. When p-SWNTs (with a diameter slightly larger than that of the C12E5 cylinders) were added to the hexagonally packed C12E5 cylindrical-micellar system, p-SWNTs positioned themselves in such a way that the free-volume entropies for both p-SWNTs and C12E5 cylinders were maximized, thus resulting in the intercalated hexagonal binary superlattice. In this binary superlattice, a hexagonal array of p-SWNTs is embedded in a honeycomb lattice of C12E5 cylinders. The intercalated hexagonal binary superlattice can be highly aligned in one direction by an oscillatory shear field and remains aligned after the shear is removed.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201403458_sm_miscellaneous_information.pdf1.9 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, Adv. Mater. 2003, 15, 353–389;
- 1bM. C. LeMieux, M. Roberts, S. Barman, Y. W. Jin, J. M. Kim, Z. N. Bao, Science 2008, 321, 101–104.
- 2
- 2aP. W. Barone, S. Baik, D. A. Heller, M. S. Strano, Nat. Mater. 2005, 4, 86–92;
- 2bN. M. Iverson, P. W. Barone, M. Shandell, L. J. Trudel, S. Sen, F. Sen, V. Ivanov, E. Atolia, E. Farias, T. P. McNicholas, N. Reuel, N. M. A. Parry, G. N. Wogan, M. S. Strano, Nat. Nanotechnol. 2013, 8, 873–880.
- 3J. Choi, J. Yang, D. Bang, J. Park, J. S. Suh, Y. M. Huh, S. Haam, Small 2012, 8, 746–753.
- 4
- 4aD. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 2006, 5, 987–994;
- 4bH. Zhang, G. P. Cao, Z. Y. Wang, Y. S. Yang, Z. J. Shi, Z. N. Gu, Nano Lett. 2008, 8, 2664–2668.
- 5
- 5aZ. Liu, K. Chen, C. Davis, S. Sherlock, Q. Z. Cao, X. Y. Chen, H. J. Dai, Cancer Res. 2008, 68, 6652–6660;
- 5bZ. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, C. Y. Chen, Adv. Mater. 2012, 24, 1418–1423.
- 6
- 6aT. J. Simmons, D. Hashim, R. Vajtai, P. M. Ajayan, J. Am. Chem. Soc. 2007, 129, 10088–10089;
- 6bT. Ming, X. S. Kou, H. J. Chen, T. Wang, H. L. Tam, K. W. Cheah, J. Y. Chen, J. F. Wang, Angew. Chem. Int. Ed. 2008, 47, 9685–9690; Angew. Chem. 2008, 120, 9831–9836;
- 6cR. A. Alvarez-Puebla, A. Agarwal, P. Manna, B. P. Khanal, P. Aldeanueva-Potel, E. Carbó-Argibay, N. Pazos-Pérez, L. Vigderman, E. R. Zubarev, N. A. Kotov, L. M. Liz-Marzán, Proc. Natl. Acad. Sci. USA 2011, 108, 8157–8161.
- 7
- 7aM. Chen, T. Pica, Y. B. Jiang, P. Li, K. Yano, J. P. Liu, A. K. Datye, H. Y. Fan, J. Am. Chem. Soc. 2007, 129, 6348–6349;
- 7bM. S. Mauter, M. Elimelech, C. O. Osuji, ACS Nano 2010, 4, 6651–6658;
- 7cC. L. Zhang, K. P. Lv, H. P. Cong, S. H. Yu, Small 2012, 8, 648–653.
- 8S. Y. Zhang, M. D. Regulacio, M. Y. Han, Chem. Soc. Rev. 2014, 43, 2301–2323.
- 9
- 9aR. B. Grubbs, Nat. Mater. 2007, 6, 553–555;
- 9bZ. H. Sun, W. H. Ni, Z. Yang, X. S. Kou, L. Li, J. F. Wang, Small 2008, 4, 1287–1292.
- 10
- 10aN. Zhao, K. Liu, J. Greener, Z. H. Nie, E. Kumacheva, Nano Lett. 2009, 9, 3077–3081;
- 10bZ. T. Li, Z. N. Zhu, W. J. Liu, Y. L. Zhou, B. Han, Y. Gao, Z. Y. Tang, J. Am. Chem. Soc. 2012, 134, 3322–3325.
- 11
- 11aD. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, L. Manna, Nano Lett. 2010, 10, 743–749;
- 11bC. Do, H. S. Jang, S. M. Choi, J. Chem. Phys. 2013, 138, 114701.
- 12
- 12aK. S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, J. Am. Chem. Soc. 2005, 127, 7140–7147;
- 12bD. V. Talapin, E. V. Shevchenko, C. B. Murray, A. Kornowski, S. Forster, H. Weller, J. Am. Chem. Soc. 2004, 126, 12984–12988.
- 13T. H. Kim, C. Do, S. H. Kang, M. J. Lee, S. H. Lim, S. M. Choi, Soft Matter 2012, 8, 9073–9078.
- 14
- 14aC. Doe, H. S. Jang, T. H. Kim, S. R. Kline, S. M. Choi, J. Am. Chem. Soc. 2009, 131, 16568–16572;
- 14bH. S. Jang, C. Do, T. H. Kim, S. M. Choi, Macromolecules 2012, 45, 986–992;
- 14cM. S. Mauter, M. Elimelech, C. O. Osuji, J. Am. Chem. Soc. 2012, 134, 3950–3953;
- 14dH. S. Jang, T. H. Kim, C. Do, M. J. Lee, S. M. Choi, Soft Matter 2013, 9, 3050–3056.
- 15
- 15aJ. J. Urban, D. V. Talapin, E. V. Shevchenko, C. R. Kagan, C. B. Murray, Nat. Mater. 2007, 6, 115–121;
- 15bJ. Chen, X. C. Ye, S. J. Oh, J. M. Kikkawa, C. R. Kagan, C. B. Murray, ACS Nano 2013, 7, 1478–1486.
- 16
- 16aE. V. Shevchenko, D. V. Talapin, C. B. Murray, S. O’Brien, J. Am. Chem. Soc. 2006, 128, 3620–3637;
- 16bE. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, C. B. Murray, Nature 2006, 439, 55–59;
- 16cA. Ben-Simon, H. Eshet, E. Rabani, ACS Nano 2013, 7, 978–986.
- 17
- 17aY. Nagaoka, T. Wang, J. Lynch, D. LaMontagne, Y. C. Cao, Small 2012, 8, 843–846;
- 17bX. C. Ye, J. A. Millan, M. Engel, J. Chen, B. T. Diroll, S. C. Glotzer, C. B. Murray, Nano Lett. 2013, 13, 4980–4988.
- 18
- 18aR. van Roij, B. Mulder, M. Dijkstra, Physica A 1998, 261, 374–390;
- 18bK. R. Purdy, S. Varga, A. Galindo, G. Jackson, S. Fraden, Phys. Rev. Lett. 2005, 94, 057801;
- 18cS. Varga, K. Purdy, A. Galindo, S. Fraden, G. Jackson, Phys. Rev. E 2005, 72, 051704;
- 18dM. Dennison, M. Dijkstra, R. van Roij, Phys. Rev. Lett. 2011, 106, 208302;
- 18eN. Puech, M. Dennison, C. Blanc, P. van der Schoot, M. Dijkstra, R. van Roij, P. Poulin, E. Grelet, Phys. Rev. Lett. 2012, 108, 247801.
- 19
- 19aA. Singh, H. Geaney, F. Laffir, K. M. Ryan, J. Am. Chem. Soc. 2012, 134, 2910–2913;
- 19bX. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, D. N. Vicky, Y. J. Kang, N. Engheta, C. R. Kagan, C. B. Murray, ACS Nano 2012, 6, 2804–2817;
- 19cX. C. Ye, C. Zheng, J. Chen, Y. Z. Gao, C. B. Murray, Nano Lett. 2013, 13, 765–771;
- 19dM. L. Zhang, D. J. B. Bechstein, R. J. Wilson, S. X. Wang, Nano Lett. 2014, 14, 333–338.
- 20
- 20aT. H. Kim, C. Doe, S. R. Kline, S. M. Choi, Adv. Mater. 2007, 19, 929–933;
- 20bT. H. Kim, C. Doe, S. R. Kline, S. M. Choi, Macromolecules 2008, 41, 3261–3266;
- 20cC. W. Doe, S. M. Choi, S. R. Kline, H. S. Jang, T. H. Kim, Adv. Funct. Mater. 2008, 18, 2685–2691.
- 21M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley, Science 2002, 297, 593–596.
- 22R. Strey, R. Schomacker, D. Roux, F. Nallet, U. Olsson, J. Chem. Soc. Faraday Trans. 1990, 86, 2253–2261.
- 23P. Lang, J. Phys. Chem. B 1999, 103, 5100–5105.
- 24
- 24aJ. V. Selinger, R. F. Bruinsma, Phys. Rev. A 1991, 43, 2910–2921;
- 24bD. P. Bossev, S. R. Kline, J. N. Israelachvili, M. E. Paulaitis, Langmuir 2001, 17, 7728–7731.
- 25P. Panine, M. Gradzielski, T. Narayanan, Rev. Sci. Instrum. 2003, 74, 2451–2455.
- 26
- 26aR. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, K. I. Winey, Chem. Phys. Lett. 2000, 330, 219–225;
- 26bL. H. Lu, W. Chen, ACS Nano 2010, 4, 1042–1048;
- 26cR. Allen, G. G. Fuller, Z. N. Bao, ACS Appl. Mater. Interfaces 2013, 5, 7244–7252;
- 26dJ. H. Olivier, P. Deria, J. Park, A. Kumbhar, M. Andrian-Albescu, M. J. Therien, Angew. Chem. Int. Ed. 2013, 52, 13080–13085; Angew. Chem. 2013, 125, 13318–13323.
- 27K. K. Ewert, H. M. Evans, A. Zidovska, N. F. Bouxsein, A. Ahmad, C. R. Safinya, J. Am. Chem. Soc. 2006, 128, 3998–4006.
- 28R. Krishnaswamy, V. A. Raghunathan, A. K. Sood, Phys. Rev. E 2004, 69, 031905.
- 29J. V. Selinger, R. F. Bruinsma, Phys. Rev. A 1991, 43, 2922–2931.
- 30Z. Chen, S. O’Brien, ACS Nano 2008, 2, 1219–1229.
- 31
- 31aM. D. Eldridge, P. A. Madden, D. Frenkel, Nature 1993, 365, 35–37;
- 31bX. Cottin, P. A. Monson, J. Chem. Phys. 1995, 102, 3354–3360.
- 32H. Xu, M. Baus, J. Phys. Condens. Matter 1992, 4, L663–L668.
- 33Z. W. Yao, M. O. de La Cruz, Proc. Natl. Acad. Sci. USA 2014, 111, 5094–5099.
Citing Literature
Special Issue:Nanotechnology & Nanomaterials, Nanotoxicology & Nanomedicine
November 10, 2014
Pages 12548-12554