Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal–Organic Framework Thin Film†
Chunjing Lu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130012 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Teng Ben
Department of Chemistry, Jilin University, Changchun, 130012 (China)
Teng Ben, Department of Chemistry, Jilin University, Changchun, 130012 (China)
Shilun Qiu, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130012 (China)
Search for more papers by this authorShixian Xu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130012 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Shilun Qiu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130012 (China)
Teng Ben, Department of Chemistry, Jilin University, Changchun, 130012 (China)
Shilun Qiu, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130012 (China)
Search for more papers by this authorChunjing Lu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130012 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Teng Ben
Department of Chemistry, Jilin University, Changchun, 130012 (China)
Teng Ben, Department of Chemistry, Jilin University, Changchun, 130012 (China)
Shilun Qiu, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130012 (China)
Search for more papers by this authorShixian Xu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130012 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Shilun Qiu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130012 (China)
Teng Ben, Department of Chemistry, Jilin University, Changchun, 130012 (China)
Shilun Qiu, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130012 (China)
Search for more papers by this authorThis work was supported by the National Natural Science Foundation of China (21390394), the National Basic Research Program of China (2012CB821700, 2011CB808703), NSFC (21261130584, 91022030), “111” project (B07016), Award Project of KAUST (CRG-1-2012-LAI-009), and the Ministry of Education, Science and Technology Development Center Project (20120061130012).
Graphical Abstract
A 3D microporous conductive polymer has been achieved in the electrochemical synthesis of a porous polyaniline network with a MOF thin film. The prepared microporous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2.
Abstract
A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201402950_sm_miscellaneous_information.pdf603.4 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Grätzel, Acc. Chem. Res. 2009, 42, 1788–1798.
- 2Y. Kou, Y. Xu, Z. Guo, D.-L. Jiang, Angew. Chem. 2011, 123, 8912–8916; Angew. Chem. Int. Ed. 2011, 50, 8753–8757.
- 3S. Xin, Y. G. Guo, L.-J. Wan, Acc. Chem. Res. 2012, 45, 1759–1769.
- 4S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M. R. Baklanov, E. Saiz, Chem. Mater. 2013, 25, 27–33.
- 5M. Kanungo, A. Kumar, A. Q. Contractor, J. Electroanal. Chem. 2002, 528, 46–56.
- 6W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. Soc. Faraday Trans. 1 1986, 82, 2385–2400.
- 7P. Kovacic, A. Kyriak, J. Am. Chem. Soc. 1963, 85, 454–458.
- 8G. B. Street, T. C. Clarke, IBM J. Res. Dev. 1981, 25, 51–57.
- 9T. Ben, K. Shi, Y. Cui, C. Pei, Y. Zuo, H. Guo, D. Zhang, J. Xu, F. Deng, Z. Tian, S. Qiu, J. Mater. Chem. 2011, 21, 18208–18214.
- 10Y. Xu, S. Jin, H. Xu, A. Nagai, D.-L. Jiang, Chem. Soc. Rev. 2013, 42, 8012–8031.
- 11
- 11aX. Feng, X. Ding, D.-L. Jiang, Chem. Soc. Rev. 2012, 41, 6010–6022;
- 11bJ. W. Colson, W. R. Dichte, Nat. Chem. 2013, 5, 453–465;
- 11cJ. W. Colson, A. R. Woll, A. M. Mukherjee, P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228–231;
- 11dS. Wan, F. Gandara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. F. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094–4097;
- 11eJ. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, S. Seki, S. Irle, M. Hiramoto, J. Gao, D.-L. Jiang, Nat. Commun. 2013, 4, 2736;
- 11fS. Jin, X. Ding, X. Feng, M. Supur, K. Furukawa, S. Takahashi, M. Addicoat, M. E. El-Khouly, T. Nakamura, S. Irle, S. Fukuzumi, A. Nagai, D.-L. Jiang, Angew. Chem. 2013, 125, 2071–2075; Angew. Chem. Int. Ed. 2013, 52, 2017–2021;
- 11gG. H. V. Bertrand, V. K. Michaelis, T.-C. Ong, R. G. Griffin, M. Dincă, Proc. Natl. Acad. Sci. USA 2013, 110, 4923–4928.
- 12
- 12aM. Zhao, X. M. Wu, C. X. Cai, J. Phys. Chem. C 2009, 113, 4987–4996;
- 12bZ. Y. Wang, S. N. Liu, P. Wu, C. X. Cai, Anal. Chem. 2009, 81, 1638–1645;
- 12cY. F. Ma, J. M. Zhang, G. J. Zhao, X. He, J. Am. Chem. Soc. 2004, 126, 7097–7101;
- 12dJ. I. Lee, S. H. Cho, S. M. Park, J. K. Kim, J. W. Yu, Y. C. Kim, T. P. Russell, Nano Lett. 2008, 8, 2315–2320.
- 13A. G. MacDiarmid, Angew. Chem. 2001, 113, 2649–2659;
10.1002/1521-3757(20010716)113:14<2649::AID-ANGE2649>3.0.CO;2-W Google ScholarAngew. Chem. Int. Ed. 2001, 40, 2581–2590.10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 14C.-G. Wu, T. Bein, Science 1994, 264, 1757–1759.
- 15C. R. Martin, Science 1994, 266, 1961–1966.
- 16L. Huang, Z. Wang, H. Wang, X. Cheng, A. Mitra, Y. Yan, J. Mater. Chem. 2002, 12, 388–391.
- 17
- 17aH. Qiu, M. Wan, B. Matthews, L. Dai, Macromolecules 2001, 34, 675–677;
- 17bY. Yang, M. Wan, J. Mater. Chem. 2002, 12, 897–901;
- 17cZ. Wei, Z. Zhang, M. Wan, Langmuir 2002, 18, 917–921;
- 17dY. Yang, J. Liu, M. Wan, Nanotechnology 2002, 13, 771–773.
- 18E. Marie, R. Rothe, M. Antonietti, K. Landfester, Macromolecules 2003, 36, 3967–3973.
- 19
- 19aL. R. MacGillivray, Metal-Organic Frameworks: Design and Application, Wiley, Hoboken, 2010;
10.1002/9780470606858 Google Scholar
- 19bH.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673–674;
- 19cS. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695–704;
- 19dG. Férey, Chem. Soc. Rev. 2008, 37, 191–214.
- 20
- 20aO. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705–714;
- 20bS. Qiu, G. Zhu, Coord. Chem. Rev. 2009, 253, 2891–2911;
- 20cR. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, H.-C. Zhou, Coord. Chem. Rev. 2009, 253, 3042–3066;
- 20dJ. J. Perry IV, J. A. Perman, M. J. Zaworotko, Chem. Soc. Rev. 2009, 38, 1400–1417;
- 20eM. O’Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675–702.
- 21
- 21aS. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan, H.-C. Zhou, J. Am. Chem. Soc. 2008, 130, 1012–1016;
- 21bS. Ma, H.-C. Zhou, Chem. Commun. 2010, 46, 44–53;
- 21cH. Wu, Q. Gong, D. H. Olson, J. Li, Chem. Rev. 2012, 112, 836–868;
- 21dM. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Chem. Rev. 2012, 112, 782–835.
- 22
- 22aJ.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504;
- 22bS. Ma, Pure Appl. Chem. 2009, 81, 2235–2251;
- 22cJ.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869–932.
- 23
- 23aJ.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena, H.-C. Zhou, Coord. Chem. Rev. 2011, 255, 1791–1823;
- 23bK. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724–781;
- 23cS. R. Caskey, J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, J. Liu, Chem. Soc. Rev. 2012, 41, 2308–2322;
- 23dP. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature 2013, 495, 80–84.
- 24
- 24aJ. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450–1459;
- 24bA. Corma, H. Garcıa, F. X. Llabrees i Xamena, Chem. Rev. 2010, 110, 4606–4655;
- 24cM. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196–1231;
- 24dV. Lykourinou, Y. Chen, X.-S. Wang, L. Meng, T. Hoang, L.-J. Ming, R. L. Musselman, S. Ma, J. Am. Chem. Soc. 2011, 133, 10382–10385;
- 24eL. Meng, Q. Cheng, C. Kim, W.-Y. Gao, L. Wojtas, Y.-S. Cheng, M. J. Zaworotko, X. P. Zhang, S. Ma, Angew. Chem. 2012, 124, 10229–10232; Angew. Chem. Int. Ed. 2012, 51, 10082–10085;
- 24fB. Li, Y. Zhang, D. Ma, T. Ma, Z. Shi, S. Ma, J. Am. Chem. Soc. 2014, 136, 1202–1205;
- 24gW.-Y. Gao, Y. Chen, Y. Niu, K. Williams, L. Cash, P. J. Perez, L. Wojtas, J. Cai, Y.-S. Chen, S. Ma, Angew. Chem. 2014, 126, 2653–2657; Angew. Chem. Int. Ed. 2014, 53, 2615–2619.
- 25
- 25aB. Chen, S. Xiang, G. Qian, Acc. Chem. Res. 2010, 43, 1115–1124;
- 25bL. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105–1125;
- 25cY. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126–1162.
- 26
- 26aT. Uemura, D. Hiramatsu, Y. Kubota, M. Takata, S. Kitagawa, Angew. Chem. 2007, 119, 5075–5078;
10.1002/ange.200700242 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 4987–4990;
- 26bN. Yanai, T. Uemura, M. Ohba, Y. Kadowaki, M. Maesato, M. Takenaka, S. Nishitsuji, H. Hasegawa, S. Kitagawa, Angew. Chem. 2008, 120, 10031–10034;
10.1002/ange.200803846 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 9883–9886;
- 26cT. Uemura, Y. Ono, K. Kitagawa, S. Kitagawa, Macromolecules 2008, 41, 87–94;
- 26dT. Uemura, S. Horike, K. Kitagawa, M. Mizuno, K. Endo, S. Bracco, A. Comotti, P. Sozzani, M. Nagaoka, S. Kitagawa, J. Am. Chem. Soc. 2008, 130, 6781–6788;
- 26eT. Uemura, Y. Kadowaki, N. Yanai, S. Kitagawa, Chem. Mater. 2009, 21, 4096–4098;
- 26fG. Distefano, H. Suzuki, M. Tsujimoto, S. Isoda, S. Bracco, A. Comotti, P. Sozzani, T. Uemura, S. Kitagawa, Nat. Chem. 2013, 5, 335–341.
- 27H. Guo, G. Zhu, I. J. Hewitt, S. Qiu, J. Am. Chem. Soc. 2009, 131, 1646–1647.
- 28Z. Kang, J. Ding, L. Fan, M. Xue, D. Zhang, L. Gao, S. Qiu, Inorg. Chem. Commun. 2013, 30, 74–78.
- 29J. Liu, F. Zhang, X. Zou, S. Zhou, L. Li, F. Sun, S. Qiu, Eur. J. Inorg. Chem. 2012, 5784–5790.
- 30R. Prakash, J. Appl. Polym. Sci. 2002, 83, 378–385.
- 31S. K. Sahoo, R. Nagarajan, S. Roy, L. A. Samuelson, J. Kumar, A. L. Cholli, Macromolecules 2004, 37, 4130–4138.
- 32E. C. Venancio, P. Wang, A. G. MacDiarmid, Synth. Met. 2006, 156, 357–369.
- 33
- 33aJ. E. Pereira da Silva, D. L. A. de Faria, S. I. Córdoba de Torresi, M. L. A. Temperini, Macromolecules 2000, 33, 3077–3083;
- 33bE. M. Scherr, A. G. MacDiarmid, S. K. Manohar, J. G. Masters, Y. Sun, X. Tang, M. A. Druy, P. J. Glatkowski, V. B. Cajipe, J. E. Fischer, K. R. Cromack, M. E. Jozefowicz, J. M. Ginder, R. P. McCall, A. J. Epstein, Synth. Met. 1991, 41, 735–738.
- 34
- 34aG. Givaja, P. Amo-Ochoa, C. J. Gómez-García, F. Zamora, Chem. Soc. Rev. 2012, 41, 115–147;
- 34bC. H. Hendon, D. Tiana, A. Walsh, Phys. Chem. Chem. Phys. 2012, 14, 13120–13132;
- 34cS. Delgado, P. J. Sanz Miguel, J. L. Priego, R. Jiménez-Aparicio, C. J. Gómez-García, F. Zamora, Inorg. Chem. 2008, 47, 9128–9130;
- 34dS. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita, Y. Nakanishi, H. Kitagawa, Inorg. Chem. 2009, 48, 9048–9050;
- 34eT. C. Narayan, T. Miyakai, S. Seki, M. Dincǎ, J. Am. Chem. Soc. 2012, 134, 12932–12935;
- 34fL. Sun, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc. 2013, 135, 8185–8188;
- 34gZ. Zhang, H. Zhao, H. Kojima, T. Mori, K. R. Dunbar, Chem. Eur. J. 2013, 19, 3348–3357;
- 34hD. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 2014, DOI: .
- 35
- 35aM.-H. Zeng, Q.-X. Wang, Y.-X. Tan, S. Hu, H.-X. Zhao, L.-S. Long, M. Kurmoo, J. Am. Chem. Soc. 2010, 132, 2561–2563;
- 35bZ. Yin, Q.-X. Wang, M.-H. Zeng, J. Am. Chem. Soc. 2012, 134, 4857–4863;
- 35cF. Gándara, F. J. Uribe-Romo, D. K. Britt, H. Furukawa, L. Lei, R. Cheng, O. M. Yaghi, Chem. Eur. J. 2012, 18, 10595–10601;
- 35dY. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120–4122.
- 36A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, M. D. Allendorf, Science 2014, 343, 66–69.
- 37X. Zeng, T. Ko, J. Polym. Sci. Part B 1997, 35, 1993–2001.
10.1002/(SICI)1099-0488(19970930)35:13<1993::AID-POLB1>3.0.CO;2-O CAS Web of Science® Google Scholar
- 38Y. Wang, H. Li, Y. Xia, Adv. Mater. 2006, 18, 2619–2623.