Facile One-Pot, One-Step Synthesis of a Carbon Nanoarchitecture for an Advanced Multifunctonal Electrocatalyst†
Dr. Zhenhai Wen
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
These authors contributed equally.
Search for more papers by this authorDr. Suqin Ci
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
These authors contributed equally.
Search for more papers by this authorDr. Yang Hou
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Search for more papers by this authorCorresponding Author
Prof. Junhong Chen
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)Search for more papers by this authorDr. Zhenhai Wen
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
These authors contributed equally.
Search for more papers by this authorDr. Suqin Ci
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
These authors contributed equally.
Search for more papers by this authorDr. Yang Hou
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Search for more papers by this authorCorresponding Author
Prof. Junhong Chen
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)Search for more papers by this authorThis research was financially supported by the National Natural Science Foundation of China (No. 21206068), the US National Science Foundation (CMMI-0900509), and the US Department of Energy (DE-EE0003208).
Graphical Abstract
Not ones to laze about on the lawn, nitrogen-doped graphene/carbon-nanotube (CNT) hybrids showed high electrocatalytic activity for a series of important electrochemical reactions as a result of nitrogen doping and their unique structure with the graphene nanosheets entrapped in the inner void of the CNTs. The hybrids were prepared by a facile low-cost method from solid-phase sources with high efficiency.
Abstract
A one-pot/one-step synthesis strategy was developed for the preparation of a nitrogen-doped carbon nanoarchitecture with graphene-nanosheet growth on the inner surface of carbon nanotubes (CNTs). The N-graphene/CNT hybrids exhibit outstanding electrocatalytic activity for several important electrochemical reactions as a result of their unique morphology and defect structures, such as high but uniform nitrogen doping, graphene insertion into CNTs, considerable surface area, and the presence of iron nanoparticles. The high-yield synthetic process features high efficiency, low-cost, straightforward operation, and simple equipment.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201402574_sm_miscellaneous_information.pdf2.7 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282;
- 1bR. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787.
- 2
- 2aT.-K. Hong, D. W. Lee, H. J. Choi, H. S. Shin, B.-S. Kim, ACS Nano 2010, 4, 3861;
- 2bK. H. Kim, Y. Oh, M. F. Islam, Nat. Nanotechnol. 2012, 7, 562;
- 2cJ. Pyun, Angew. Chem. 2011, 123, 46; Angew. Chem. Int. Ed. 2011, 50, 46;
- 2dD. Yu, L. Dai, J. Phys. Chem. Lett. 2010, 1, 467.
- 3
- 3aM.-Q. Zhao, X.-F. Liu, Q. Zhang, G.-L. Tian, J.-Q. Huang, W. Zhu, F. Wei, ACS Nano 2012, 6, 10759;
- 3bV. C. Tung, L.-M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, Y. Yang, Nano Lett. 2009, 9, 1949.
- 4
- 4aV. Sridhar, H.-J. Kim, J.-H. Jung, C. Lee, S. Park, I.-K. Oh, ACS Nano 2012, 6, 10562;
- 4bS. S. Jyothirmayee Aravind, R. I. Jafri, N. Rajalakshmi, S. Ramaprabhu, J. Mater. Chem. 2011, 21, 18199;
- 4cB. P. Vinayan, R. Nagar, V. Raman, N. Rajalakshmi, K. S. Dhathathreyan, S. Ramaprabhu, J. Mater. Chem. 2012, 22, 9949;
- 4dZ. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei, Adv. Mater. 2010, 22, 3723.
- 5Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.-R. O. Raji, C. Kittrell, R. H. Hauge, J. M. Tour, Nat. Commun. 2012, 3, 1225.
- 6Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394.
- 7R. Lv, T. Cui, M.-S. Jun, Q. Zhang, A. Cao, D. S. Su, Z. Zhang, S.-H. Yoon, J. Miyawaki, I. Mochida, F. Kang, Adv. Funct. Mater. 2011, 21, 999.
- 8
- 8aZ. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J. M. Tour, Nature 2010, 468, 549;
- 8bY. Shen, L. Yan, H. Song, J. Yang, G. Yang, X. Chen, J. Zhou, Z.-Z. Yu, S. Yang, Angew. Chem. 2012, 124, 12368; Angew. Chem. Int. Ed. 2012, 51, 12202.
- 9
- 9aY. Tang, B. L. Allen, D. R. Kauffman, A. Star, J. Am. Chem. Soc. 2009, 131, 13200;
- 9bX. Qi, Y. Deng, W. Zhong, Y. Yang, C. Qin, C. Au, Y. Du, J. Phys. Chem. C 2010, 114, 808;
- 9cY. Chai, Q. F. Zhang, J. L. Wu, Carbon 2006, 44, 687;
- 9dM. Lin, J. P. Y. Tan, C. Boothroyd, K. P. Loh, E. S. Tok, Y.-L. Foo, Nano Lett. 2007, 7, 2234.
- 10Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, Adv. Mater. 2012, 24, 1399.
- 11
- 11aA. Fischer, J. O. Mueller, M. Antonietti, A. Thomas, ACS Nano 2008, 2, 2489;
- 11bY.-S. Jun, W. H. Hong, M. Antonietti, A. Thomas, Adv. Mater. 2009, 21, 4270.
- 12
- 12aR. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, R. J. Waite, J. Catal. 1972, 26, 51;
- 12bG. D. Nessim, Nanoscale 2010, 2, 1306.
- 13
- 13aJ. C. Carrero-Sánchez, A. L. Elías, R. Mancilla, G. Arrellín, H. Terrones, J. P. Laclette, M. Terrones, Nano Lett. 2006, 6, 1609;
- 13bK. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760;
- 13cL. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 1321;
- 13dS. Ci, Z. Wen, J. Chen, Z. He, Electrochem. Commun. 2012, 14, 71;
- 13eZ. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Adv. Mater. 2012, 24, 5610;
- 13fW. Li, Z. Zhang, B. Kong, S. Feng, J. Wang, L. Wang, J. Yang, F. Zhang, P. Wu, D. Zhao, Angew. Chem. 2013, 125, 8309; Angew. Chem. Int. Ed. 2013, 52, 8151;
- 13gY. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 2013, 4, 1.
- 14
- 14aS. van Dommele, A. Romero-Izquirdo, R. Brydson, K. P. de Jong, J. H. Bitter, Carbon 2008, 46, 138;
- 14bD. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 2009, 9, 1752.
- 15A. A. Koós, F. Dillon, E. A. Obraztsova, A. Crossley, N. Grobert, Carbon 2010, 48, 3033.
- 16
- 16aE. Ortel, T. Reier, P. Strasser, R. Kraehnert, Chem. Mater. 2011, 23, 3201;
- 16bY. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, T. Regier, H. J. Dai, Nat. Mater. 2011, 10, 780;
- 16cM. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng, S. H. Yu, J. Am. Chem. Soc. 2012, 134, 2930.
- 17
- 17aE. Mirzakulova, R. Khatmullin, J. Walpita, T. Corrigan, N. M. Vargas-Barbosa, S. Vyas, S. Oottikkal, S. F. Manzer, C. M. Hadad, K. D. Glusac, Nat. Chem. 2012, 4, 794;
- 17bW. Rüttinger, G. Dismukes, Chem. Rev. 1997, 97, 1.
- 18
- 18aW. Chen, S. Cai, Q.-Q. Ren, W. Wen, Y.-D. Zhao, Analyst 2012, 137, 49;
- 18bS. Chen, R. Yuan, Y. Chai, F. Hu, Microchim. Acta 2013, 180, 15.
- 19K. Jackowska, P. Krysinski, Anal. Bioanal. Chem. 2013, 405, 3753.
- 20
- 20aA. Ambrosi, S. Y. Chee, B. Khezri, R. D. Webster, Z. Sofer, M. Pumera, Angew. Chem. 2012, 124, 515;
10.1002/ange.201106917 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 500;
- 20bA. Ambrosi, C. K. Chua, B. Khezri, Z. Sofer, R. D. Webster, M. Pumera, Proc. Natl. Acad. Sci. USA 2012, 109, 12899;
- 20cC. E. Banks, A. Crossley, C. Salter, S. J. Wilkins, R. G. Compton, Angew. Chem. 2006, 118, 2595;
10.1002/ange.200600033 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 2533;
- 20dC. H. A. Wong, C. K. Chua, B. Khezri, R. D. Webster, M. Pumera, Angew. Chem. 2013, 125, 8847; Angew. Chem. Int. Ed. 2013, 52, 8685.