Covalent Surface Modification of Oxide Surfaces
Dr. Sidharam P. Pujari
Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (The Netherlands)
Search for more papers by this authorDr. Luc Scheres
Surfix B.V. Dreijenplein 8, 6703 HB Wageningen (The Netherlands)
Search for more papers by this authorDr. Antonius T. M. Marcelis
Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (The Netherlands)
Search for more papers by this authorCorresponding Author
Prof. Dr. Han Zuilhof
Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (The Netherlands)
Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)
Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (The Netherlands)Search for more papers by this authorDr. Sidharam P. Pujari
Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (The Netherlands)
Search for more papers by this authorDr. Luc Scheres
Surfix B.V. Dreijenplein 8, 6703 HB Wageningen (The Netherlands)
Search for more papers by this authorDr. Antonius T. M. Marcelis
Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (The Netherlands)
Search for more papers by this authorCorresponding Author
Prof. Dr. Han Zuilhof
Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (The Netherlands)
Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)
Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (The Netherlands)Search for more papers by this authorGraphical Abstract
Not just scratching the surface: Covalently attached monolayers on oxide surfaces are reviewed with an eye to improved robustness, increased functionalization, understanding structural details, and the resulting potential for applications. Such monolayers, provided they are robust enough, provide a way of improving the properties of the bulk oxide material.
Abstract
The modification of surfaces by the deposition of a robust overlayer provides an excellent handle with which to tune the properties of a bulk substrate to those of interest. Such control over the surface properties becomes increasingly important with the continuing efforts at down-sizing the active components in optoelectronic devices, and the corresponding increase in the surface area/volume ratio. Relevant properties to tune include the degree to which a surface is wetted by water or oil. Analogously, for biosensing applications there is an increasing interest in so-called “romantic surfaces”: surfaces that repel all biological entities, apart from one, to which it binds strongly. Such systems require both long lasting and highly specific tuning of the surface properties. This Review presents one approach to obtain robust surface modifications of the surface of oxides, namely the covalent attachment of monolayers.
References
- 1T. Kondo, R. Yamada, K. Uosaki, Organized Organic Ultrathin Films, Fundamentals and Applications, Wiley-VCH, Weinheim, 2013, pp. 7–42.
- 2F. Renate, S. Holger, A. J. A. Tobias, Surface Design: Applications in Bioscience and Nanotechnology, Wiley-VCH, Weinheim, 2009.
- 3
- 3aJ. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103–1169;
- 3bC. Vericat, M. E. Vela, G. Benitez, P. Carro, R. C. Salvarezza, Chem. Soc. Rev. 2010, 39, 1805–1834;
- 3cE. Pensa, E. Cortés, G. Corthey, P. Carro, C. Vericat, M. H. Fonticelli, G. Benítez, A. A. Rubert, R. C. Salvarezza, Acc. Chem. Res. 2012, 45, 1183–1192;
- 3dO. Zenasni, A. C. Jamison, T. R. Lee, Soft Matter 2013, 9, 6356–6370;
- 3eH. Häkkinen, Nat. Chem. 2012, 4, 443–455.
- 4
- 4aC. Stavis, T. L. Clare, J. E. Butler, A. D. Radadia, R. Carr, H. Zeng, W. P. King, J. A. Carlisle, A. Aksimentiev, R. Bashir, R. J. Hamers, Proc. Natl. Acad. Sci. USA 2011, 108, 983–988;
- 4bW. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, R. J. Hamers, Nat. Mater. 2002, 1, 253–257;
- 4cR. E. Ruther, M. L. Rigsby, J. B. Gerken, S. R. Hogendoorn, E. C. Landis, S. S. Stahl, R. J. Hamers, J. Am. Chem. Soc. 2011, 133, 5692–5694;
- 4dR. E. Ruther, Q. Cui, R. J. Hamers, J. Am. Chem. Soc. 2013, 135, 5751–5761.
- 5Y. Li, S. Calder, O. Yaffe, D. Cahen, H. Haick, L. Kronik, H. Zuilhof, Langmuir 2012, 28, 9920–9929.
- 6N. S. Bhairamadgi, S. P. Pujari, F. G. Trovela, A. Debrassi, A. A. Khamis, J. M. Alonso, A. A. Al-Zahrani, T. Wennekes, H. A. Al-Turaif, C. van Rijn, Y. A. Alhamed, H. Zuilhof, Langmuir, 2014, revision Manuscript ID: la-2014-00533f.
- 7B. Rijksen, S. P. Pujari, L. Scheres, C. J. M. van Rijn, J. E. Baio, T. Weidner, H. Zuilhof, Langmuir 2012, 28, 6577–6588.
- 8Chem. Rev. 2013, 113, (Issue no. 6 of Chemical Reviews 2013 deals entirely with the surface chemistry of oxides. These provide excellent entry points to various aspects of the surface side of this topic. Of specific interest to the general topic of this Review can be mentioned: J. M. Vohs, Chem. Rev. 2013, 113, 4136–4163.).
- 9
- 9aS. Onclin, B. J. Ravoo, D. N. Reinhoudt, Angew. Chem. 2005, 117, 6438–6462;
10.1002/ange.200500633 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 6282–6304;
- 9bC. Haensch, S. Hoeppener, U. S. Schubert, Chem. Soc. Rev. 2010, 39, 2323–2334;
- 9cN. Herzer, S. Hoeppener, U. S. Schubert, Chem. Commun. 2010, 46, 5634–5652.
- 10
- 10aE. P. Plueddemann, Silane coupling agents, Plenum, New York/London, 1982;
10.1007/978-1-4899-0342-6 Google Scholar
- 10bA. Ulman, Chem. Rev. 1996, 96, 1533–1554;
- 10cA. Ulman, An introduction to ultrathin organic films: from Langmuir–Blodgett to self-assembly, Academic Press, Boston, 1991.
- 11M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, H. E. Gaub, Science 1999, 283, 1727–1730.
- 12
- 12aR. Tian, O. Seitz, M. Li, W. Hu, Y. J. Chabal, J. Gao, Langmuir 2010, 26, 4563–4566;
- 12bS. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, F. M. Geiger, J. Am. Chem. Soc. 2012, 134, 11726–11733;
- 12cJ. Sagiv, J. Am. Chem. Soc. 1980, 102, 92–98;
- 12dK. Wen, R. Maoz, H. Cohen, J. Sagiv, A. Gibaud, A. Desert, B. M. Ocko, ACS Nano 2008, 2, 579–599.
- 13A. Y. Fadeev, T. J. McCarthy, J. Am. Chem. Soc. 1999, 121, 12184–12185.
- 14
- 14aY. Lin, L. Wang, J. W. Krumpfer, J. J. Watkins, T. J. McCarthy, Langmuir 2013, 29, 1329–1332;
- 14bA. Y. Fadeev, T. J. McCarthy, Langmuir 1999, 15, 3759–3766;
- 14cI. Anac, T. J. McCarthy, J. Colloid Interface Sci. 2009, 331, 138–142.
- 15
- 15aR. Chen, H. Kim, P. C. McIntyre, S. F. Bent, Chem. Mater. 2005, 17, 536–544;
- 15bX. Jiang, S. F. Bent, J. Phys. Chem. C 2009, 113, 17613–17625.
- 16
- 16aR. Helmy, R. W. Wenslow, A. Y. Fadeev, J. Am. Chem. Soc. 2004, 126, 7595–7600;
- 16bsee Ref. [13].
- 17
- 17aD. Hausmann, J. Becker, S. Wang, R. G. Gordon, Science 2002, 298, 402–406;
- 17bL. Netzer, R. Iscovici, J. Sagiv, Thin Solid Films 1983, 99, 235–241;
- 17cA. Wang, H. Tang, T. Cao, S. O. Salley, K. Y. S. Ng, J. Colloid Interface Sci. 2005, 291, 438–447.
- 18F. Zhang, K. Sautter, A. M. Larsen, D. A. Findley, R. C. Davis, H. Samha, M. R. Linford, Langmuir 2010, 26, 14648–14654.
- 19
- 19aJ. Gun, J. Sagiv, J. Colloid Interface Sci. 1986, 112, 457–472;
- 19bR. Maoz, H. Cohen, J. Sagiv, Langmuir 1998, 14, 5988–5993;
- 19cS. Liu, R. Maoz, J. Sagiv, Nano Lett. 2004, 4, 845–851;
- 19dA. Zeira, D. Chowdhury, R. Maoz, J. Sagiv, ACS Nano 2008, 2, 2554–2568.
- 20J. Zhang, J. Hoogboom, P. H. J. Kouwer, A. E. Rowan, T. Rasing, J. Phys. Chem. C 2008, 112, 20105–20108.
- 21N. Rozlosnik, M. C. Gerstenberg, N. B. Larsen, Langmuir 2003, 19, 1182–1188.
- 22
- 22aM. E. McGovern, K. M. R. Kallury, M. Thompson, Langmuir 1994, 10, 3607–3614;
- 22bT. Manifar, A. Rezaee, M. Sheikhzadeh, S. Mittler, Appl. Surf. Sci. 2008, 254, 4611–4619.
- 23Y.-a. Cheng, B. Zheng, P.-h. Chuang, S. Hsieh, Langmuir 2010, 26, 8256–8261.
- 24S. Desbief, L. Patrone, D. Goguenheim, D. Guerin, D. Vuillaume, Phys. Chem. Chem. Phys. 2011, 13, 2870–2879.
- 25C. P. Tripp, M. L. Hair, Langmuir 1995, 11, 149–155.
- 26R. M. Pasternack, S. R. Amy, Y. J. Chabal, Langmuir 2008, 24, 12963–12971.
- 27X. Cao, T. Zhang, J. Deng, L. Jiang, W. Yang, ACS Appl. Mater. Interfaces 2013, 5, 494–499.
- 28S. Xiang, G. Xing, W. Xue, C. Lu, J.-M. Lin, Analyst 2012, 137, 1669–1673.
- 29I. Haller, J. Am. Chem. Soc. 1978, 100, 8050–8055.
- 30J.-R. Li, J. C. Garno, Nano Lett. 2008, 8, 1916–1922.
- 31
- 31aA. Hozumi, K. Ushiyama, H. Sugimura, O. Takai, Langmuir 1999, 15, 7600–7604;
- 31bR. D. Lowe, M. A. Pellow, T. D. P. Stack, C. E. D. Chidsey, Langmuir 2011, 27, 9928–9935.
- 32
- 32aW. Gu, C. P. Tripp, Langmuir 2006, 22, 5748–5752;
- 32bX. Jia, T. J. McCarthy, Langmuir 2002, 18, 683–687.
- 33G. E. Fryxell, S. V. Mattigod, Y. Lin, H. Wu, S. Fiskum, K. Parker, F. Zheng, W. Yantasee, T. S. Zemanian, R. S. Addleman, J. Liu, K. Kemner, S. Kelly, X. Feng, J. Mater. Chem. 2007, 17, 2863–2874.
- 34S. P. Pujari, K. Ellinas, A. Tserepi, E. Gogolides, H. Zuilhof, ACS Appl. Mater. Interfaces 2014, revision Manuscript ID: am-2014-000432.R1
- 35
- 35aO. Seitz, P. G. Fernandes, G. A. Mahmud, H. C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, Y. J. Chabal, Langmuir 2011, 27, 7337–7340;
- 35bSee Ref. [12a];
- 35cD. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, Y. J. Chabal, J. Phys. Chem. C 2010, 114, 14180–14186;
- 35dN. A. Lapin, Y. J. Chabal, J. Phys. Chem. B 2009, 113, 8776–8783.
- 36C. P. Tripp, M. L. Hair, Langmuir 1992, 8, 1961–1967.
- 37N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert, S. Boujday, Langmuir 2012, 28, 656–665.
- 38
- 38aM. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schutz, S. Maisch, F. Effenberger, M. Brunnbauer, F. Stellacci, Nature 2004, 431, 963–966;
- 38bS. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, Y. Iwasa, Nat. Mater. 2004, 3, 317–322;
- 38cY. Ahn, Y. Jang, N. Selvapalam, G. Yun, K. Kim, Angew. Chem. 2013, 125, 3222–3226;
10.1002/ange.201209382 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 3140–3144.
- 39J. J. Gooding, S. Ciampi, Chem. Soc. Rev. 2011, 40, 2704–2718.
- 40Y. Liu, V. N. Khabashesku, N. J. Halas, J. Am. Chem. Soc. 2005, 127, 3712–3713.
- 41G. Balasundaram, M. Sato, T. J. Webster, Biomaterials 2006, 27, 2798–2805.
- 42J. A. Howarter, J. P. Youngblood, Langmuir 2006, 22, 11142–11147.
- 43
- 43aA. Zeira, D. Chowdhury, S. Hoeppener, S. Liu, J. Berson, S. R. Cohen, R. Maoz, J. Sagiv, Langmuir 2009, 25, 13984–14001;
- 43bR. A. Shircliff, P. Stradins, H. Moutinho, J. Fennell, M. L. Ghirardi, S. W. Cowley, H. M. Branz, I. T. Martin, Langmuir 2013, 29, 4057–4067.
- 44R. A. Walker, K. Wilson, A. F. Lee, J. Woodford, V. H. Grassian, J. Baltrusaitis, G. Rubasinghege, G. Cibin, A. Dent, Sci. Rep. 2012, 2, 880–885.
- 45X. Deng, L. Mammen, H.-J. Butt, D. Vollmer, Science 2012, 335, 67–70.
- 46J. Zhang, B. Li, L. Wu, A. Wang, Chem. Commun. 2013, DOI: .
- 47C. Belgardt, E. Sowade, T. Blaudeck, T. Baumgartel, H. Graaf, C. von Borczyskowski, R. R. Baumann, Phys. Chem. Chem. Phys. 2013, 15, 7494–7504.
- 48B. M. Silverman, K. A. Wieghaus, J. Schwartz, Langmuir 2005, 21, 225–228.
- 49S. Marcinko, A. Y. Fadeev, Langmuir 2004, 20, 2270–2273.
- 50S. P. Pujari, Y. Li, R. Regeling, H. Zuilhof, Langmuir 2013, 29, 10405–10415.
- 51H. E. Ries, Jr., H. D. Cook, J. Colloid Sci. 1954, 9, 535–546.
- 52
- 52aC. Queffélec, M. Petit, P. Janvier, D. A. Knight, B. Bujoli, Chem. Rev. 2012, 112, 3777–3807;
- 52bA. Clearfield, K. Demadis, Metal Phosphonate Chemistry: From Synthesis to Applications, RSC, London, 2012;
- 52cK. J. Gagnon, H. P. Perry, A. Clearfield, Chem. Rev. 2012, 112, 1034–1054.
- 53P. Thissen, M. Valtiner, G. Grundmeier, Langmuir 2010, 26, 156–164.
- 54
- 54aG. Guerrero, P. H. Mutin, A. Vioux, J. Mater. Chem. 2001, 11, 3161–3165;
- 54bT. Hauffman, O. Blajiev, J. Snauwaert, C. van Haesendonck, A. Hubin, H. Terryn, Langmuir 2008, 24, 13450–13456;
- 54cX. Chen, E. Luais, N. Darwish, S. Ciampi, P. Thordarson, J. J. Gooding, Langmuir 2012, 28, 9487–9495;
- 54dR. Hofer, M. Textor, N. D. Spencer, Langmuir 2001, 17, 4014–4020.
- 55
- 55aG. Cao, H. G. Hong, T. E. Mallouk, Acc. Chem. Res. 1992, 25, 420–427;
- 55bP. G. Mingalyov, G. V. Lisichkin, Russ. Chem. Rev. 2006, 75, 541–557.
- 56
- 56aE. L. Hanson, J. Schwartz, B. Nickel, N. Koch, M. F. Danisman, J. Am. Chem. Soc. 2003, 125, 16074–16080;
- 56bA. Vega, P. Thissen, Y. J. Chabal, Langmuir 2012, 28, 8046–8051.
- 57H.-Y. Nie, M. J. Walzak, N. S. McIntyre, J. Phys. Chem. B 2006, 110, 21101–21108.
- 58H. Y. Nie, M. J. Walzak, N. S. McIntyre, Langmuir 2002, 18, 2955–2958.
- 59A. Bulusu, S. A. Paniagua, B. A. MacLeod, A. K. Sigdel, J. J. Berry, D. C. Olson, S. R. Marder, S. Graham, Langmuir 2013, 29, 3935–3942.
- 60
- 60aP. Thissen, A. Vega, T. Peixoto, Y. J. Chabal, Langmuir 2012, 28, 17494–17505;
- 60bS. Gupta, H. Gleskova, Org. Electron. 2013, 14, 354–361.
- 61N. Tsud, M. Yoshitake, Surf. Sci. 2007, 601, 3060–3066.
- 62
- 62aP. H. Mutin, G. Guerrero, A. Vioux, J. Mater. Chem. 2005, 15, 3761–3768;
- 62bP. J. Hotchkiss, S. C. Jones, S. A. Paniagua, A. Sharma, B. Kippelen, N. R. Armstrong, S. R. Marder, Acc. Chem. Res. 2012, 45, 337–346.
- 63G. Guerrero, P. H. Mutin, A. Vioux, Chem. Mater. 2001, 13, 4367–4373.
- 64M. Giza, P. Thissen, G. Grundmeier, Langmuir 2008, 24, 8688–8694.
- 65F. Brodard-Severac, G. Guerrero, J. Maquet, P. Florian, C. Gervais, P. H. Mutin, Chem. Mater. 2008, 20, 5191–5196.
- 66V. Lafond, C. Gervais, J. Maquet, D. Prochnow, F. Babonneau, P. H. Mutin, Chem. Mater. 2003, 15, 4098–4103.
- 67S. Pawsey, M. McCormick, S. De Paul, R. Graf, Y. S. Lee, L. Reven, H. W. Spiess, J. Am. Chem. Soc. 2003, 125, 4174–4184.
- 68N. Adden, L. J. Gamble, D. G. Castner, A. Hoffmann, G. Gross, H. Menzel, Langmuir 2006, 22, 8197–8204.
- 69S. A. Paniagua, P. J. Hotchkiss, S. C. Jones, S. R. Marder, A. Mudalige, F. S. Marrikar, J. E. Pemberton, N. R. Armstrong, J. Phys. Chem. C 2008, 112, 7809–7817.
- 70M. Gliboff, L. Sang, K. M. Knesting, M. C. Schalnat, A. Mudalige, E. L. Ratcliff, H. Li, A. K. Sigdel, A. J. Giordano, J. J. Berry, D. Nordlund, G. T. Seidler, J.-L. Brédas, S. R. Marder, J. E. Pemberton, D. S. Ginger, Langmuir 2013, 29, 2166–2174.
- 71E. Smecca, A. Motta, M. E. Fragalà, Y. Aleeva, G. G. Condorelli, J. Phys. Chem. C 2013, 117, 5364–5372.
- 72
- 72aR. Michel, J. W. Lussi, G. Csucs, I. Reviakine, G. Danuser, B. Ketterer, J. A. Hubbell, M. Textor, N. D. Spencer, Langmuir 2002, 18, 3281–3287;
- 72bH. Ma, O. Acton, D. O. Hutchins, N. Cernetic, A. K. Y. Jen, Phys. Chem. Chem. Phys. 2012, 14, 14110–14126;
- 72cD. Liu, X. Xu, Y. Su, Z. He, J. Xu, Q. Miao, Angew. Chem. 2013, 125, 6342–6347; Angew. Chem. Int. Ed. 2013, 52, 6222–6227.
- 73N. Griep-Raming, M. Karger, H. Menzel, Langmuir 2004, 20, 11811–11814.
- 74M. de Los Reyes, P. J. Majewski, N. Scales, V. Luca, ACS Appl. Mater. Interfaces 2013, 5, 4120–4128.
- 75K. D. Demadis, M. Papadaki, R. G. Raptis, H. Zhao, Chem. Mater. 2008, 20, 4835–4846.
- 76W. O. Yah, A. Takahara, Y. M. Lvov, J. Am. Chem. Soc. 2012, 134, 1853–1859.
- 77
- 77aR. Torres Martin de Rosales, R. Tavaré, R. L. Paul, M. Jauregui-Osoro, A. Protti, A. Glaria, G. Varma, I. Szanda, P. J. Blower, Angew. Chem. 2011, 123, 5623–5627;
10.1002/ange.201007894 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 5509–5513;
- 77bK. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, I. L. Medintz, Chem. Rev. 2013, 113, 1904–2074;
- 77cR. Torres Martin de Rosales, R. Tavaré, A. Glaria, G. Varma, A. Protti, P. J. Blower, Bioconjugate Chem. 2011, 22, 455–465;
- 77dI. Řehoř, V. Vilímová, P. Jendelová, V. c. Kubíček, D. Jirák, V. t. Herynek, M. Kapcalová, J. Kotek, J. Černý, P. Hermann, I. Lukeš, J. Med. Chem. 2011, 54, 5185–5194.
- 78
- 78aS. Mukherjee, C. Huang, F. Guerra, K. Wang, E. Oldfield, J. Am. Chem. Soc. 2009, 131, 8374–8375;
- 78bS. Mukherjee, Y. Song, E. Oldfield, J. Am. Chem. Soc. 2008, 130, 1264–1273;
- 78cD. Campoccia, L. Montanaro, C. R. Arciola, Biomaterials 2006, 27, 2331–2339.
- 79S.-H. Chang, J.-L. Han, S. Y. Tseng, H.-Y. Lee, C.-W. Lin, Y.-C. Lin, W.-Y. Jeng, A. H. J. Wang, C.-Y. Wu, C.-H. Wong, J. Am. Chem. Soc. 2010, 132, 13371–13380.
- 80
- 80aY. T. Tao, J. Am. Chem. Soc. 1993, 115, 4350–4358;
- 80bG. A. Buckholtz, E. S. Gawalt, Materials 2012, 5, 1206–1218;
- 80cD. L. Allara, R. G. Nuzzo, Langmuir 1985, 1, 52–66;
- 80dD. L. Allara, R. G. Nuzzo, Langmuir 1985, 1, 45–52;
- 80eJ. P. Folkers, C. B. Gorman, P. E. Laibinis, S. Buchholz, G. M. Whitesides, R. G. Nuzzo, Langmuir 1995, 11, 813–824;
- 80fN. E. Schlotter, M. D. Porter, T. B. Bright, D. L. Allara, Chem. Phys. Lett. 1986, 132, 93–98.
- 81G. E. Brown, V. E. Henrich, W. H. Casey, D. L. Clark, C. Eggleston, A. Felmy, D. W. Goodman, M. Grätzel, G. Maciel, M. I. McCarthy, K. H. Nealson, D. A. Sverjensky, M. F. Toney, J. M. Zachara, Chem. Rev. 1999, 99, 77–174.
- 82D. J. Miller, L. Sun, M. J. Walzak, N. S. McLntyre, D. Chvedov, A. Rosenfeld, Surf. Interface Anal. 2003, 35, 463–476.
- 83T. Bauer, T. Schmaltz, T. Lenz, M. Halik, B. Meyer, T. Clark, ACS Appl. Mater. Interfaces 2013, 5, 6073–6080.
- 84M. S. Lim, K. Feng, X. Chen, N. Wu, A. Raman, J. Nightingale, E. S. Gawalt, D. Korakakis, L. A. Hornak, A. T. Timperman, Langmuir 2007, 23, 2444–2452.
- 85
- 85aI. V. Chernyshova, S. Ponnurangam, P. Somasundaran, Langmuir 2011, 27, 10007–10018;
- 85bS. Ponnurangam, I. V. Chernyshova, P. Somasundaran, Langmuir 2012, 28, 10661–10671;
- 85cK. Norén, P. Persson, Geochim. Cosmochim. Acta 2007, 71, 5717–5730.
- 86
- 86aA. Raman, R. Quiñones, L. Barriger, R. Eastman, A. Parsi, E. S. Gawalt, Langmuir 2010, 26, 1747–1754;
- 86bE. R. Garland, E. P. Rosen, L. I. Clarke, T. Baer, Phys. Chem. Chem. Phys. 2008, 10, 3156–3161.
- 87L. H. Dubois, B. R. Zegarski, R. G. Nuzzo, Langmuir 1986, 2, 412–417.
- 88A. Raman, E. S. Gawalt, Langmuir 2007, 23, 2284–2288.
- 89B. Kim, S. W. Park, J.-Y. Kim, K. Yoo, J. A. Lee, M.-W. Lee, D.-K. Lee, J. Y. Kim, B. Kim, H. Kim, S. Han, H. J. Son, M. J. Ko, ACS Appl. Mater. Interfaces 2013, 5, 5201–5207.
- 90Q. Qu, H. Geng, R. Peng, Q. Cui, X. Gu, F. Li, M. Wang, Langmuir 2010, 26, 9539–9546.
- 91
- 91aJ. Martz, L. Zuppiroli, F. Nüesch, Langmuir 2004, 20, 11428–11432;
- 91bF. Nüesch, M. Carrara, L. Zuppiroli, Langmuir 2003, 19, 4871–4875.
- 92
- 92aF. D. Fleischli, S. Suárez, M. Schaer, L. Zuppiroli, Langmuir 2010, 26, 15044–15049;
- 92bA. von Mühlenen, N. Errien, M. Schaer, M.-N. Bussac, L. Zuppiroli, Phys. Rev. B 2007, 75, 115338.
- 93Y. G. Aronoff, B. Chen, G. Lu, C. Seto, J. Schwartz, S. L. Bernasek, J. Am. Chem. Soc. 1997, 119, 259–262.
- 94
- 94aS. Pawsey, K. Yach, J. Halla, L. Reven, Langmuir 2000, 16, 3294–3303;
- 94bG. G. Ting, O. Acton, H. Ma, J. W. Ka, A. K. Y. Jen, Langmuir 2009, 25, 2140–2147.
- 95
- 95aK. D. Dobson, A. J. McQuillan, Spectrochim. Acta Part A 2000, 56, 557–565;
- 95bP.-F. Guo, H.-B. Liu, X. Liu, H.-F. Li, W.-Y. Huang, S.-J. Xiao, J. Phys. Chem. C 2010, 114, 333–341;
- 95cV. Zeleňák, Z. Vargová, K. Györyová, Spectrochim. Acta Part A 2007, 66, 262–272.
- 96P. Taheri, J. Wielant, T. Hauffman, J. R. Flores, F. Hannour, J. H. W. de Wit, J. M. C. Mol, H. Terryn, Electrochim. Acta 2011, 56, 1904–1911.
- 97J. J. Stapleton, D. L. Suchy, J. Banerjee, K. T. Mueller, C. G. Pantano, ACS Appl. Mater. Interfaces 2010, 2, 3303–3309.
- 98C.-P. Cho, Y.-T. Tao, Langmuir 2007, 23, 7090–7095.
- 99T. P. Brewster, S. J. Konezny, S. W. Sheehan, L. A. Martini, C. A. Schmuttenmaer, V. S. Batista, R. H. Crabtree, Inorg. Chem. 2013, 52, 6752–6764.
- 100L. A. Martini, G. F. Moore, R. L. Milot, L. Z. Cai, S. W. Sheehan, C. A. Schmuttenmaer, G. W. Brudvig, R. H. Crabtree, J. Phys. Chem. C 2013, 117, 14526–14533.
- 101L. M. Bishop, J. C. Yeager, X. Chen, J. N. Wheeler, M. D. Torelli, M. C. Benson, S. D. Burke, J. A. Pedersen, R. J. Hamers, Langmuir 2012, 28, 1322–1329.
- 102I. Carmeli, A. Lewin, E. Flekser, I. Diamant, Q. Zhang, J. Shen, M. Gozin, S. Richter, Y. Dagan, Angew. Chem. 2012, 124, 7274–7277;
10.1002/ange.201201606 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 7162–7165.
- 103E. D. Mentovich, B. Belgorodsky, I. Kalifa, S. Richter, Adv. Mater. 2010, 22, 2182–2186.
- 104
- 104aS. Szillies, G. Grundmeier, D. Tabatabai, F. Feil, W. Fürbeth, N. Fink, P. Thissen, Appl. Surf. Sci. 2013, 283, 339–347;
- 104bJ. Zhang, J. Zhang, Tribol. Lett. 2013, 49, 77–83;
- 104cC. Arisio, C. A. Cassou, M. Lieberman, Langmuir 2013, 29, 5145–5149;
- 104dM. M. Islam, B. Diawara, P. Marcus, D. Costa, Catal. Today 2011, 177, 39–49.
- 105X. Fan, L. Lin, J. L. Dalsin, P. B. Messersmith, J. Am. Chem. Soc. 2005, 127, 15843–15847.
- 106Q. Ye, F. Zhou, W. Liu, Chem. Soc. Rev. 2011, 40, 4244–4258.
- 107C. E. Brubaker, P. B. Messersmith, Langmuir 2012, 28, 2200–2205.
- 108B. H. Kim, D. H. Lee, J. Y. Kim, D. O. Shin, H. Y. Jeong, S. Hong, J. M. Yun, C. M. Koo, H. Lee, S. O. Kim, Adv. Mater. 2011, 23, 5618–5622.
- 109
- 109aH. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318, 426–430;
- 109bH. Lee, Nature 2010, 465, 298–299;
- 109cI. You, S. M. Kang, S. Lee, Y. O. Cho, J. B. Kim, S. B. Lee, Y. S. Nam, H. Lee, Angew. Chem. 2012, 124, 6230–6234; Angew. Chem. Int. Ed. 2012, 51, 6126–6130;
- 109dS. M. Kang, I. You, W. K. Cho, H. K. Shon, T. G. Lee, I. S. Choi, J. M. Karp, H. Lee, Angew. Chem. 2010, 122, 9591–9594; Angew. Chem. Int. Ed. 2010, 49, 9401–9404.
- 110
- 110aJ. Sedó, J. Saiz-Poseu, F. Busqué, D. Ruiz-Molina, Adv. Mater. 2013, 25, 653–701;
- 110bV. Ball, D. Del Frari, M. Michel, M. J. Buehler, V. Toniazzo, M. K. Singh, J. Gracio, D. Ruch, Bionanoscience 2012, 2, 16–34;
10.1007/s12668-011-0032-3 Google Scholar
- 110cE. Faure, C. Falentin-Daudré, C. Jérôme, J. Lyskawa, D. Fournier, P. Woisel, C. Detrembleur, Prog. Polym. Sci. 2013, 38, 236–270;
- 110dB. P. Lee, P. B. Messersmith, J. N. Israelachvili, J. H. Waite, Annu. Rev. Mater. Res. 2011, 41, 99–132.
- 111
- 111aM. J. Sever, J. T. Weisser, J. Monahan, S. Srinivasan, J. J. Wilker, Angew. Chem. 2004, 116, 454–456;
10.1002/ange.200352759 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 448–450;
- 111bM. J. Harrington, A. Masic, N. Holten-Andersen, J. H. Waite, P. Fratzl, Science 2010, 328, 216–220.
- 112M. Guvendiren, D. A. Brass, P. B. Messersmith, K. R. Shull, J. Adhes. 2009, 85, 631–645.
- 113See Ref. [110b].
- 114
- 114aT. H. Anderson, J. Yu, A. Estrada, M. U. Hammer, J. H. Waite, J. N. Israelachvili, Adv. Funct. Mater. 2010, 20, 4196–4205;
- 114bJ. Yu, W. Wei, M. S. Menyo, A. Masic, J. H. Waite, J. N. Israelachvili, Biomacromolecules 2013, 14, 1072–1077.
- 115
- 115aB. Malisova, S. Tosatti, M. Textor, K. Gademann, S. Zürcher, Langmuir 2010, 26, 4018–4026;
- 115bM. Rodenstein, S. Zürcher, S. G. P. Tosatti, N. D. Spencer, Langmuir 2010, 26, 16211–16220.
- 116Y. Wang, I. Zhitomirsky, J. Colloid Interface Sci. 2012, 380, 8–15.
- 117Y. Yang, W. Yan, C. Jing, Langmuir 2012, 28, 14588–14597.
- 118N. Lee, D. R. Hummer, D. A. Sverjensky, T. Rajh, R. M. Hazen, A. Steele, G. D. Cody, Langmuir 2012, 28, 17322–17330.
- 119E. Amstad, A. U. Gehring, H. Fischer, V. V. Nagaiyanallur, G. Hähner, M. Textor, E. Reimhult, J. Phys. Chem. C 2011, 115, 683–691.
- 120
- 120aS. J. Hurst, H. C. Fry, D. J. Gosztola, T. Rajh, J. Phys. Chem. C 2011, 115, 620–630;
- 120bP. Tarakeshwar, D. Finkelstein-Shapiro, S. J. Hurst, T. Rajh, V. Mujica, J. Phys. Chem. C 2011, 115, 8994–9004;
- 120cA. Musumeci, D. Gosztola, T. Schiller, N. M. Dimitrijevic, V. Mujica, D. Martin, T. Rajh, J. Am. Chem. Soc. 2009, 131, 6040–6041.
- 121
- 121aJ. L. Dalsin, L. Lin, S. Tosatti, J. Vörös, M. Textor, P. B. Messersmith, Langmuir 2005, 21, 640–646;
- 121bG. S. Tulevski, Q. Miao, M. Fukuto, R. Abram, B. Ocko, R. Pindak, M. L. Steigerwald, C. R. Kagan, C. Nuckolls, J. Am. Chem. Soc. 2004, 126, 15048–15050.
- 122R. Rodríguez, M. A. Blesa, A. E. Regazzoni, J. Colloid Interface Sci. 1996, 177, 122–131.
- 123Q. Chen, Y. Jia, S. Liu, G. Mogilevsky, A. Kleinhammes, Y. Wu, J. Phys. Chem. C 2008, 112, 17331–17335.
- 124H. Lee, N. F. Scherer, P. B. Messersmith, Proc. Natl. Acad. Sci. USA 2006, 103, 12999–13003.
- 125S.-C. Li, J.-g. Wang, P. Jacobson, X. Q. Gong, A. Selloni, U. Diebold, J. Am. Chem. Soc. 2009, 131, 980–984.
- 126S.-C. Li, L.-N. Chu, X.-Q. Gong, U. Diebold, Science 2010, 328, 882–884.
- 127S. Verma, P. Kar, A. Das, D. K. Palit, H. N. Ghosh, Chem. Eur. J. 2010, 16, 611–619.
- 128
- 128aJ. Hoecker, R. Liffert, P. Burch, R. Wehlauch, K. Gademann, Org. Biomol. Chem. 2013, 11, 3314–3321;
- 128bR. Wehlauch, J. Hoecker, K. Gademann, ChemPlusChem 2012, 77, 1071–1074;
- 128cE. Amstad, J. Kohlbrecher, E. Müller, T. Schweizer, M. Textor, E. Reimhult, Nano Lett. 2011, 11, 1664–1670;
- 128dZ. Shafiq, J. Cui, L. Pastor-Pérez, V. San Miguel, R. A. Gropeanu, C. Serrano, A. del Campo, Angew. Chem. 2012, 124, 4408–4411;
10.1002/ange.201108629 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 4332–4335.
- 129
- 129aT. Gillich, C. Acikgöz, L. Isa, A. D. Schlüter, N. D. Spencer, M. Textor, ACS Nano 2013, 7, 316–329;
- 129bT. Gillich, E. M. Benetti, E. Rakhmatullina, R. Konradi, W. Li, A. Zhang, A. D. Schlüter, M. Textor, J. Am. Chem. Soc. 2011, 133, 10940–10950.
- 130
- 130aJ. Gomes, A. Grunau, A. K. Lawrence, L. Eberl, K. Gademann, CHIMIA Int. J. Chem. 2013, 67, 275–278;
- 130bS. Zürcher, D. Wäckerlin, Y. Bethuel, B. Malisova, M. Textor, S. Tosatti, K. Gademann, J. Am. Chem. Soc. 2006, 128, 1064–1065.
- 131
- 131aD. Dahlhaus, S. Franzka, E. Hasselbrink, N. Hartmann, Nano Lett. 2006, 6, 2358–2361;
- 131bT. Balgar, S. Franzka, N. Hartmann, Appl. Phys. A 2006, 82, 689–695;
- 131cH. Urch, S. Franzka, D. Dahlhaus, N. Hartmann, E. Hasselbrink, M. Epple, J. Mater. Chem. 2006, 16, 1798–1802;
- 131dB. Klingebiel, L. Scheres, S. Franzka, H. Zuilhof, N. Hartmann, Langmuir 2010, 26, 6826–6831;
- 131eL. Scheres, B. Klingebiel, J. t. Maat, M. Giesbers, H. de Jong, N. Hartmann, H. Zuilhof, Small 2010, 6, 1918–1926.
- 132
- 132aM. Rosso, M. Giesbers, A. Arafat, K. Schroën, H. Zuilhof, Langmuir 2009, 25, 2172–2180;
- 132bM. Rosso, A. Arafat, K. Schroen, M. Giesbers, C. S. Roper, R. Maboudian, H. Zuilhof, Langmuir 2008, 24, 4007–4012;
- 132cA. Arafat, K. Schroën, L. C. P. M. de Smet, E. J. R. Sudhölter, H. Zuilhof, J. Am. Chem. Soc. 2004, 126, 8600–8601.
- 133
- 133aF. Roccaforte, F. La Via, V. Raineri, P. Musumeci, L. Calcagno, G. G. Condorelli, Appl. Phys. A 2003, 77, 827–833;
- 133bU. Starke, Phys. Status Solidi B 1997, 202, 475–499.
- 134J. ter Maat, R. Regeling, M. Yang, M. N. Mullings, S. F. Bent, H. Zuilhof, Langmuir 2009, 25, 11592–11597.
- 135T. K. Mischki, R. L. Donkers, B. J. Eves, G. P. Lopinski, D. D. M. Wayner, Langmuir 2006, 22, 8359–8365.
- 136B. Li, R. Franking, E. C. Landis, H. Kim, R. J. Hamers, ACS Appl. Mater. Interfaces 2009, 1, 1013–1022.
- 137R. Franking, E. C. Landis, R. J. Hamers, Langmuir 2009, 25, 10676–10684.
- 138R. Franking, H. Kim, S. A. Chambers, A. N. Mangham, R. J. Hamers, Langmuir 2012, 28, 12085–12093.
- 139R. Franking, R. J. Hamers, J. Phys. Chem. C 2011, 115, 17102–17110.
- 140
- 140aY. Li, H. Zuilhof, Langmuir 2012, 28, 5350–5359;
- 140bY. Li, M. Giesbers, M. Gerth, H. Zuilhof, Langmuir 2012, 28, 12509–12517.
- 141R. E. Ruther, R. Franking, A. M. Huhn, J. Gomez-Zayas, R. J. Hamers, Langmuir 2011, 27, 10604–10614.
- 142R. J. Hamers, S. A. Chambers, P. E. Evans, R. Franking, Z. Gerbec, P. Gopalan, H. Kim, E. C. Landis, B. Li, M. W. McCoy, T. Ohsawa, R. Ruther, Phys. Status Solidi C 2010, 7, 200–205.
- 143
- 143aM. C. Benson, R. E. Ruther, J. B. Gerken, M. L. Rigsby, L. M. Bishop, Y. Tan, S. S. Stahl, R. J. Hamers, ACS Appl. Mater. Interfaces 2011, 3, 3110–3119;
- 143bS. Shah, M. C. Benson, L. M. Bishop, A. M. Huhn, R. E. Ruther, J. C. Yeager, Y. Tan, K. M. Louis, R. J. Hamers, J. Mater. Chem. 2012, 22, 11561–11567.
- 144S. U. Schwarz, V. Cimalla, G. Eichapfel, M. Himmerlich, S. Krischok, O. Ambacher, Langmuir 2013, 29, 6296–6301.
- 145J. M. Alonso, A. K. Trilling, L. Scheres, M. C. R. Franssen, H. Zuilhof, unpublished results.
- 146S. P. Pujari, L. Scheres, B. van Lagen, H. Zuilhof, Langmuir 2013, 29, 10393–10404.
- 147
- 147aL. Scheres, M. Giesbers, H. Zuilhof, Langmuir 2010, 26, 4790–4795;
- 147bL. Scheres, M. Giesbers, H. Zuilhof, Langmuir 2010, 26, 10924–10929;
- 147cA. Ng, S. Ciampi, M. James, J. B. Harper, J. J. Gooding, Langmuir 2009, 25, 13934–13941.
- 148M. Giesbers, A. T. M. Marcelis, H. Zuilhof, Langmuir 2013, 29, 4782–4788.
- 149J. ter Maat, R. Regeling, C. J. Ingham, C. A. G. M. Weijers, M. Giesbers, W. M. de Vos, H. Zuilhof, Langmuir 2011, 27, 13606–13617.
- 150S. P. Pujari, L. Scheres, T. Weidner, J. E. Baio, M. A. C. Stuart, C. J. M. van Rijn, H. Zuilhof, Langmuir 2013, 29, 4019–4031.
- 151A. Debrassi, A. Ribbera, W. M. de Vos, T. Wennekes, H. Zuilhof, Langmuir 2014, 30, 1311–1320.
- 152
- 152aT. Vong, J. ter Maat, T. A. van Beek, B. van Lagen, M. Giesbers, J. C. M. van Hest, H. Zuilhof, Langmuir 2009, 25, 13952–13958;
- 152bT. Vong, S. Schoffelen, S. F. M. van Dongen, T. A. van Beek, H. Zuilhof, J. C. M. van Hest, Chem. Sci. 2011, 2, 1278–1285.
- 153E. Faure, E. Halusiak, F. Farina, N. Giamblanco, C. Motte, M. Poelman, C. Archambeau, C. Van De Weerdt, J. Martial, C. Jérôme, A.-S. Duwez, C. Detrembleur, Langmuir 2012, 28, 2971–2978.
- 154S. Chen, L. Li, C. Zhao, J. Zheng, Polymer 2010, 51, 5283–5293.
- 155
- 155aE. M. Sletten, C. R. Bertozzi, Angew. Chem. 2009, 121, 7108–7133;
10.1002/ange.200900942 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 6974–6998;
- 155bR. Manova, T. A. van Beek, H. Zuilhof, Angew. Chem. 2011, 123, 5540–5542;
10.1002/ange.201100835 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 5428–5430.
- 156
- 156aA. Calloni, A. Brambilla, G. Berti, G. Bussetti, E. V. Canesi, M. Binda, A. Petrozza, M. Finazzi, F. Ciccacci, L. Duò, Langmuir 2013, 29, 8302–8310;
- 156bE. V. Canesi, M. Binda, A. Abate, S. Guarnera, L. Moretti, V. D′Innocenzo, R. S. S. Kumar, C. Bertarelli, A. Abrusci, H. Snaith, A. Calloni, A. Brambilla, F. Ciccacci, S. Aghion, F. Moia, R. Ferragut, C. Melis, G. Malloci, A. Mattoni, G. Lanzani, A. Petrozza, Energy Environ. Sci. 2012, 5, 9068–9076.
- 157J. J. Benítez, S. Kopta, D. F. Ogletree, M. Salmeron, Langmuir 2002, 18, 6096–6100.
- 158J. J. Benítez, S. Kopta, I. Díez-Pérez, F. Sanz, D. F. Ogletree, M. Salmeron, Langmuir 2003, 19, 762–765.
- 159I. V. Chernyshova, K. H. Rao, A. Vidyadhar, A. V. Shchukarev, Langmuir 2000, 16, 8071–8084.
- 160J. J. Benítez, M. A. San-Miguel, S. Domínguez-Meister, J. A. Heredia-Guerrero, M. Salmeron, J. Phys. Chem. C 2011, 115, 19716–19723.
- 161S. Gangarapu, A. T. M. Marcelis, H. Zuilhof, ChemPhysChem 2012, 13, 3973–3980.
- 162Y. Feng, S. Chen, J. You, W. Guo, Electrochim. Acta 2007, 53, 1743–1753.
- 163
- 163aK. F. Khaled, N. Hackerman, Mater. Chem. Phys. 2003, 82, 949–960;
- 163bC. Jeyaprabha, S. Sathiyanarayanan, G. Venkatachari, Appl. Surf. Sci. 2005, 246, 108–116.
- 164N. Belman, K. Jin, Y. Golan, J. N. Israelachvili, N. S. Pesika, Langmuir 2012, 28, 14609–14617.
- 165F. Xu, K. Chen, R. D. Piner, C. A. Mirkin, J. E. Ritchie, J. T. McDevitt, M. O. Cannon, D. Kanis, Langmuir 1998, 14, 6505–6511.
- 166J. Zhu, C. A. Mirkin, R. M. Braun, N. Winograd, J. Am. Chem. Soc. 1998, 120, 5126–5127.
- 167S. Hosseinpour, J. Hedberg, S. Baldelli, C. Leygraf, M. Johnson, J. Phys. Chem. C 2011, 115, 23871–23879.
- 168Ž. Petrović, M. Metikoš-Huković, R. Babić, Prog. Org. Coat. 2008, 61, 1–6.
- 169J. Chen, R. E. Ruther, Y. Tan, L. M. Bishop, R. J. Hamers, Langmuir 2012, 28, 10437–10445.
- 170J. Denayer, J. Delhalle, Z. Mekhalif, J. Electrochem. Soc. 2011, 158, P 100–P108.
- 171T. Tüken, N. Kıcır, N. T. Elalan, G. Sığırcık, M. Erbil, Appl. Surf. Sci. 2012, 258, 6793–6799.
- 172A. Ikegami, M. Suda, T. Watanabe, Y. Einaga, Angew. Chem. 2010, 122, 382–384;
10.1002/ange.200904548 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 372–374.
- 173J. Chen, R. Franking, R. E. Ruther, Y. Tan, X. He, S. R. Hogendoorn, R. J. Hamers, Langmuir 2011, 27, 6879–6889.
- 174P. Paoprasert, S. Kandala, D. P. Sweat, R. Ruther, P. Gopalan, J. Mater. Chem. 2012, 22, 1046–1053.
- 175B. Chatterjee, Coord. Chem. Rev. 1978, 26, 281–303.
- 176J. Yang, P. J. Bremer, I. L. Lamont, A. J. McQuillan, Langmuir 2006, 22, 10109–10117.
- 177
- 177aW. R. McNamara, R. C. Snoeberger III, G. Li, C. Richter, L. J. Allen, R. L. Milot, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, V. S. Batista, Energy Environ. Sci. 2009, 2, 1173–1175;
- 177bW. R. McNamara, R. L. Milot, H.-e. Song, R. C. Snoeberger III, V. S. Batista, C. A. Schmuttenmaer, G. W. Brudvig, R. H. Crabtree, Energy Environ. Sci. 2010, 3, 917–923;
- 177cM. Hemgesberg, S. Schütz, C. Müller, M. Schlörholz, H. Latzel, Y. Sun, C. Ziegler, W. R. Thiel, Appl. Surf. Sci. 2012, 259, 406–415.
- 178A. Agarwala, T. Subramani, A. Goldbourt, D. Danovich, R. Yerushalmi, Angew. Chem. 2013, 125, 7563–7566;
10.1002/ange.201302655 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 7415–7418.
- 179N. Millot, A. Cox, C. C. Santini, Y. Molard, J.-M. Basset, Chem. Eur. J. 2002, 8, 1438–1442.
10.1002/1521-3765(20020315)8:6<1438::AID-CHEM1438>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 180Y.-J. Wanglee, J. Hu, R. E. White, M.-Y. Lee, S. M. Stewart, P. Perrotin, S. L. Scott, J. Am. Chem. Soc. 2012, 134, 355–366.
- 181
- 181aN. A. LaFranzo, J. A. Maurer, Adv. Funct. Mater. 2013, 23, 2415–2421;
- 181bR. Yerushalmi, J. C. Ho, Z. Fan, A. Javey, Angew. Chem. 2008, 120, 4512–4514;
10.1002/ange.200800737 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 4440–4442;
- 181cC. Zhou, G. Nagy, A. V. Walker, J. Am. Chem. Soc. 2005, 127, 12160–12161;
- 181dC. C. A. Ng, A. Magenau, S. H. Ngalim, S. Ciampi, M. Chockalingham, J. B. Harper, K. Gaus, J. J. Gooding, Angew. Chem. 2012, 124, 7826–7830;
10.1002/ange.201202118 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 7706–7710;
- 181eI. Kaminska, W. Qi, A. Barras, J. Sobczak, J. Niedziolka-Jonsson, P. Woisel, J. Lyskawa, W. Laure, M. Opallo, M. Li, R. Boukherroub, S. Szunerits, Chem. Eur. J. 2013, 19, 8673–8678;
- 181fI. Levine, S. M. Weber, Y. Feldman, T. Bendikov, H. Cohen, D. Cahen, A. Vilan, Langmuir 2012, 28, 404–415;
- 181gD. Zigah, C. Herrier, L. Scheres, M. Giesbers, B. Fabre, P. Hapiot, H. Zuilhof, Angew. Chem. 2010, 122, 3225–3228;
10.1002/ange.200906924 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 3157–3160;
- 181hW. Li, B. J. Worfolk, P. Li, T. C. Hauger, K. D. Harris, J. M. Buriak, J. Mater. Chem. 2012, 22, 11354–11363;
- 181iG. Dubey, F. Rosei, G. P. Lopinski, Chem. Commun. 2011, 47, 10593–10595.
- 182K. R. Williams, K. Gupta, M. Wasilik, J. Microelectromech. Syst. 2003, 12, 761–778.
- 183
- 183aS. A. A. Ahmad, L. S. Wong, E. ul-Haq, J. K. Hobbs, G. J. Leggett, J. Micklefield, J. Am. Chem. Soc. 2009, 131, 1513–1522;
- 183bJ. J. Cras, C. A. Rowe-Taitt, D. A. Nivens, F. S. Ligler, Biosens. Bioelectron. 1999, 14, 683–688.
- 184H. Han, J. Wu, C. W. Avery, M. Mizutani, X. Jiang, M. Kamigaito, Z. Chen, C. Xi, K. Kuroda, Langmuir 2011, 27, 4010–4019.
- 185H. Lee, K. D. Lee, K. B. Pyo, S. Y. Park, H. Lee, Langmuir 2010, 26, 3790–3793.
- 186S. Dhar, O. Seitz, M. D. Halls, S. Choi, Y. J. Chabal, L. C. Feldman, J. Am. Chem. Soc. 2009, 131, 16808–16813.
- 187D. K. Bhowmick, S. Linden, A. Devaux, L. De Cola, H. Zacharias, Small 2012, 8, 592–601.
- 188M. Auernhammer, S. J. Schoell, M. Sachsenhauser, K. C. Liao, J. Schwartz, I. D. Sharp, A. Cattani-Scholz, Appl. Phys. Lett. 2012, 100, 101601–101604.
- 189
- 189aSee Ref. [150];
- 189bA. Dey, C. J. van den Hoogen, M. Rosso, N. Lousberg, M. M. R. M. Hendrix, H. Friedrich, J. Ramírez-Rico, H. Zuilhof, G. de With, N. A. J. M. Sommerdijk, ChemPlusChem 2012, 77, 694–699.
- 190A. M. M. Jani, I. M. Kempson, D. Losic, N. H. Voelcker, Angew. Chem. 2010, 122, 8105–8109;
10.1002/ange.201002504 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 7933–7937.
- 191L. N. Mitchon, J. M. White, Langmuir 2006, 22, 6549–6554.
- 192G. Tzvetkov, G. Koller, Y. Zubavichus, O. Fuchs, M. B. Casu, C. Heske, E. Umbach, M. Grunze, M. G. Ramsey, F. P. Netzer, Langmuir 2004, 20, 10551–10559.
- 193W. O. Yah, H. Xu, H. Soejima, W. Ma, Y. Lvov, A. Takahara, J. Am. Chem. Soc. 2012, 134, 12134–12137.
- 194A. G. Thomas, K. L. Syres, Chem. Soc. Rev. 2012, 41, 4207–4217.
- 195
- 195aH. J. Martin, K. H. Schulz, J. D. Bumgardner, K. B. Walters, Langmuir 2007, 23, 6645–6651;
- 195bG. Zorn, J. E. Baio, T. Weidner, V. Migonney, D. G. Castner, Langmuir 2011, 27, 13104–13112.
- 196
- 196aJ. Das, C.-H. Huh, K. Kwon, S. Park, S. Jon, K. Kim, H. Yang, Langmuir 2009, 25, 235–241;
- 196bV. M. Bermudez, A. D. Berry, H. Kim, A. Piqué, Langmuir 2006, 22, 11113–11125.
- 197
- 197aM. Chockalingam, N. Darwish, G. Le Saux, J. J. Gooding, Langmuir 2011, 27, 2545–2552;
- 197bM. Gliboff, H. Li, K. M. Knesting, A. J. Giordano, D. Nordlund, G. T. Seidler, J.-L. Brédas, S. R. Marder, D. S. Ginger, J. Phys. Chem. C 2013, 117, 15139–15147.
- 198T. J. Gardner, C. D. Frisbie, M. S. Wrighton, J. Am. Chem. Soc. 1995, 117, 6927–6933.
- 199C. E. J. Cordonier, A. Nakamura, K. Shimada, A. Fujishima, Langmuir 2011, 27, 3157–3165.
- 200W. Guo, J. Zhu, Z. Cheng, Z. Zhang, X. Zhu, ACS Appl. Mater. Interfaces 2011, 3, 1675–1680.
- 201A. Raman, M. Dubey, I. Gouzman, E. S. Gawalt, Langmuir 2006, 22, 6469–6472.
- 202C.-M. Ruan, T. Bayer, S. Meth, C. N. Sukenik, Thin Solid Films 2002, 419, 95–104.
- 203M. Anil, M. J. Dave, N. P. Devang, D. F. Marc, A. A. Arturo, A. C. Mauli, Nanomed. Nanotech. Biol. Med. 2006, 2, 182–190.
- 204M. L. Manesse, R. Sanjines, V. Stambouli, C. Jorel, B. Pelissier, M. Pisarek, R. Boukherroub, S. Szunerits, Langmuir 2009, 25, 8036–8041.
- 205R. De Palma, W. Laureyn, F. Frederix, K. Bonroy, J.-J. Pireaux, G. Borghs, G. Maes, Langmuir 2007, 23, 443–451.
- 206D. Costenaro, F. Carniato, G. Gatti, C. Bisio, L. Marchese, J. Phys. Chem. C 2011, 115, 25257–25265.
- 207F. H. Li, J. D. Fabbri, R. I. Yurchenko, A. N. Mileshkin, J. N. Hohman, H. Yan, H. Yuan, I. C. Tran, T. M. Willey, M. Bagge-Hansen, J. E. P. Dahl, R. M. K. Carlson, A. A. Fokin, P. R. Schreiner, Z.-X. Shen, N. A. Melosh, Langmuir 2013, 29, 9790–9797.
- 208S. Pasche, S. M. De Paul, J. Vörös, N. D. Spencer, M. Textor, Langmuir 2003, 19, 9216–9225.