Intracellular Thermometry by Using Fluorescent Gold Nanoclusters†
Dr. Li Shang
Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany) http://www.aph.kit.edu/nienhaus/
Search for more papers by this authorFlorian Stockmar
Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany) http://www.aph.kit.edu/nienhaus/
Search for more papers by this authorNaghmeh Azadfar
Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany) http://www.aph.kit.edu/nienhaus/
Search for more papers by this authorCorresponding Author
Prof. Dr. G. Ulrich Nienhaus
Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany) http://www.aph.kit.edu/nienhaus/
Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany)
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany) http://www.aph.kit.edu/nienhaus/Search for more papers by this authorDr. Li Shang
Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany) http://www.aph.kit.edu/nienhaus/
Search for more papers by this authorFlorian Stockmar
Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany) http://www.aph.kit.edu/nienhaus/
Search for more papers by this authorNaghmeh Azadfar
Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany) http://www.aph.kit.edu/nienhaus/
Search for more papers by this authorCorresponding Author
Prof. Dr. G. Ulrich Nienhaus
Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany) http://www.aph.kit.edu/nienhaus/
Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany)
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany) http://www.aph.kit.edu/nienhaus/Search for more papers by this authorFinancial support from the Deutsche Forschungsgemeinschaft (DFG) through the Center for Functional Nanostructures (CFN) and the Priority Program SPP1313 is gratefully acknowledged. We also thank Radian Popescu and Prof. Dr. Dagmar Gerthsen for their support with the HRTEM measurements, and Alexander Hepting for his help with building the temperature-controlled microscope sample stage.
Graphical Abstract
The “gold standard” for nanothermometry: The application of ultrasmall, near-IR-emitting fluorescent gold nanoclusters (AuNCs) for temperature sensing has been explored. AuNC-based fluorescent nanothermometry features excellent thermal sensitivity and simultaneous temperature sensing and imaging in HeLa cells.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201306366_sm_miscellaneous_information.pdf1.7 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Monti, L. Brandt, J. Ikomi-Kumm, H. Olsson, Scand. J. Haematol. 1986, 36, 353–357;
- 1bO. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, T. Yoshioka, Biophys. J. 1998, 74, 82–89;
- 1cB. B. Lowell, B. M. Spiegelman, Nature 2000, 404, 652–660;
- 1dM. Guo, Y. Xu, M. Gruebele, Proc. Natl. Acad. Sci. USA 2012, 109, 17863–17867.
- 2
- 2aK. M. McCabe, M. Hernandez, Pediatr. Res. 2010, 67, 469–475;
- 2bK. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, S. Uchiyama, Nat. Commun. 2012, 3, 705.
- 3
- 3aJ. Lee, N. A. Kotov, Nano Today 2007, 2, 48–51;
- 3bD. Jaque, F. Vetrone, Nanoscale 2012, 4, 4301–4326.
- 4
- 4aL. Martinez Maestro, E. Martín Rodríguez, F. Sanz-Rodríguez, M. C. Iglesias de La Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, J. García Solé, Nano Lett. 2010, 10, 5109–5115;
- 4bL. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, J. G. Solé, Small 2011, 7, 1774–1778;
- 4cA. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen, B. A. Helms, J. Am. Chem. Soc. 2012, 134, 9565–9568.
- 5
- 5aH. S. Peng, M. I. J. Stich, J. B. Yu, L. N. Sun, L. H. Fischer, O. S. Wolfbeis, Adv. Mater. 2010, 22, 716–719;
- 5bF. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de La Fuente, F. Sanz-Rodríguez, L. Martínez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, J. A. Capobianco, ACS Nano 2010, 4, 3254–3258;
- 5cL. H. Fischer, G. S. Harms, O. S. Wolfbeis, Angew. Chem. 2011, 123, 4640–4645; Angew. Chem. Int. Ed. 2011, 50, 4546–4551.
- 6C. Gota, K. Okabe, T. Funatsu, Y. Harada, S. Uchiyama, J. Am. Chem. Soc. 2009, 131, 2766–2767.
- 7J. M. Yang, H. Yang, L. W. Lin, ACS Nano 2011, 5, 5067–5071.
- 8
- 8aL. Shang, S. Dong, G. U. Nienhaus, Nano Today 2011, 6, 401–418;
- 8bY. Lu, W. Chen, Chem. Soc. Rev. 2012, 41, 3594–3623.
- 9
- 9aC.-C. Huang, C.-T. Chen, Y.-C. Shiang, Z.-H. Lin, H.-T. Chang, Anal. Chem. 2009, 81, 875–882;
- 9bY. Liu, K. Ai, X. Cheng, L. Huo, L. Lu, Adv. Funct. Mater. 2010, 20, 951–956;
- 9cY. Wang, Y. Wang, F. Zhou, P. Kim, Y. Xia, Small 2012, 8, 3769–3773.
- 10
- 10aH. M. A. Muhammed, P. Verma, S. Pal, R. Kumar, S. Paul, R. Omkumar, T. Pradeep, Chem. Eur. J. 2009, 15, 10110–10120;
- 10bC. Sun, H. Yang, Y. Yuan, X. Tian, L. Wang, Y. Guo, L. Xu, J. Lei, N. Gao, G. J. Anderson, X.-J. Liang, C. Chen, Y. Zhao, G. Nie, J. Am. Chem. Soc. 2011, 133, 8617–8624;
- 10cL. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, G. U. Nienhaus, Small 2011, 7, 2614–2620;
- 10dC. L. Liu, H. T. Wu, Y. H. Hsiao, C. W. Lai, C. W. Shih, Y. K. Peng, K. C. Tang, H. W. Chang, Y. C. Chien, J. K. Hsiao, J. T. Cheng, P. T. Chou, Angew. Chem. 2011, 123, 7194–7198; Angew. Chem. Int. Ed. 2011, 50, 7056–7060.
- 11
- 11aY. Wang, J. Chen, J. Irudayaraj, ACS Nano 2011, 5, 9718–9725;
- 11bH. Chen, B. Li, X. Ren, S. Li, Y. Ma, S. Cui, Y. Gu, Biomaterials 2012, 33, 8461–8476.
- 12L. Shang, L. Yang, F. Stockmar, R. Popescu, V. Trouillet, M. Bruns, D. Gerthsen, G. U. Nienhaus, Nanoscale 2012, 4, 4155–4160.
- 13M. Baker, Nat. Methods 2010, 7, 957–962.
- 14
- 14aC. Baleizão, S. Nagl, S. M. Borisov, M. Schäferling, O. S. Wolfbeis, M. N. Berberan-Santos, Chem. Eur. J. 2007, 13, 3643–3651;
- 14bD. Cauzzi, R. Pattacini, M. Delferro, F. Dini, C. Di Natale, R. Paolesse, S. Bonacchi, M. Montalti, N. Zaccheroni, M. Calvaresi, F. Zerbetto, L. Prodi, Angew. Chem. 2012, 124, 9800–9803;
10.1002/ange.201204052 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 9662–9665.
- 15
- 15aJ. M. Forward, D. Bohmann, J. P. Fackler, R. J. Staples, Inorg. Chem. 1995, 34, 6330–6336;
- 15bJ. Bomm, C. Günter, J. Stumpe, J. Phys. Chem. C 2012, 116, 81–85;
- 15cZ. Luo, X. Yuan, Y. Yu, Q. Zhang, D. T. Leong, J. Y. Lee, J. Xie, J. Am. Chem. Soc. 2012, 134, 16662–16670.
- 16M. Y. Berezin, S. Achilefu, Chem. Rev. 2010, 110, 2641–2684.
- 17L. Yang, L. Shang, G. U. Nienhaus, Nanoscale 2013, 5, 1537–1543.
- 18L. Treuel, G. U. Nienhaus, Biophys. Rev. 2012, 4, 137–147.
- 19
- 19aC. Röcker, M. Pötzl, F. Zhang, W. J. Parak, G. U. Nienhaus, Nat. Nanotechnol. 2009, 4, 577–580;
- 19bM. P. Monopoli, C. Aberg, A. Salvati, K. A. Dawson, Nat. Nanotechnol. 2012, 7, 779–786;
- 19cL. Shang, S. Brandholt, F. Stockmar, V. Trouillet, M. Bruns, G. U. Nienhaus, Small 2012, 8, 661–665.
- 20
- 20aM. Amelia, R. Flamini, L. Latterini, Langmuir 2010, 26, 10129–10134;
- 20bE. Perevedentseva, N. Melnik, C. Y. Tsai, Y. C. Lin, M. Kazaryan, C. L. Cheng, J. Appl. Phys. 2011, 109, 034704;
- 20cL. Shang, R. Dörlich, V. Trouillet, M. Bruns, G. U. Nienhaus, Nano Res. 2012, 5, 531–542.
- 21A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat. Mater. 2009, 8, 543–557.
- 22
- 22aM. I. J. Stich, S. Nagl, O. S. Wolfbeis, U. Henne, M. Schaeferling, Adv. Funct. Mater. 2008, 18, 1399–1406;
- 22bJ. Feng, K. Tian, D. Hu, S. Wang, S. Li, Y. Zeng, Y. Li, G. Yang, Angew. Chem. 2011, 123, 8222–8226; Angew. Chem. Int. Ed. 2011, 50, 8072–8076;
- 22cJ. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, R. Quidant, Nano Lett. 2012, 12, 2107–2111.
- 23P. N. Hedde, G. U. Nienhaus, Biophys. Rev. 2010, 2, 147–158.