Surface-Metastable Phase-Initiated Seeding and Ostwald Ripening: A Facile Fluorine-Free Process towards Spherical Fluffy Core/Shell, Yolk/Shell, and Hollow Anatase Nanostructures†
Lu Cao
Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)
Search for more papers by this authorCorresponding Author
Dr. Dehong Chen
Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)
Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)Search for more papers by this authorCorresponding Author
Prof. Rachel A. Caruso
Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)
CSIRO Materials Science and Engineering, Private Bag 33, Clayton South, Victoria 3169 (Australia)
Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)Search for more papers by this authorLu Cao
Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)
Search for more papers by this authorCorresponding Author
Dr. Dehong Chen
Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)
Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)Search for more papers by this authorCorresponding Author
Prof. Rachel A. Caruso
Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)
CSIRO Materials Science and Engineering, Private Bag 33, Clayton South, Victoria 3169 (Australia)
Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)Search for more papers by this authorThis research was financially supported by an Australian Research Council Discovery Project (grant number DP110101346). L.C. acknowledges the support of an Australian Postgraduate Award and MMI-CSIRO PhD Materials Science Top-up. R.A.C. is a recipient of an Australian Research Council Future Fellowship (grant number FT0990583). Dr. Simon Crawford is thanked for ultramicrotoming samples in preparation for TEM characterization. Dr. Xiaofei Duan and Mr David Parris are appreciated for acquiring XPS and XRD results, respectively. The Advanced Microscopy Facility and Surface and Chemical Analysis Network (SCAN) at the University of Melbourne are acknowledged for electron microscopy and XPS access, respectively.
Graphical Abstract
Versatile synthetic method: Monodisperse anatase microspheres with various complex morphologies have been synthesized by using a versatile fluorine-free solvothermal process in the presence of ammonia. Unambiguous evidence related to surface seeding and a subsequent hollowing process revealed an Ostwald ripening evolution process.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201305819_sm_miscellaneous_information.pdf2.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. W. Lou, L. A. Archer, Z. C. Yang, Adv. Mater. 2008, 20, 3987–4019;
- 1bJ. Hu, M. Chen, X. S. Fang, L. W. Wu, Chem. Soc. Rev. 2011, 40, 5472–5491;
- 1cX. Lai, J. Li, B. A. Korgel, Z. Dong, Z. Li, F. Su, J. Du, D. Wang, Angew. Chem. 2011, 123, 2790–2793; Angew. Chem. Int. Ed. 2011, 50, 2738–2741;
- 1dL. Zhou, D. Y. Zhao, X. W. Lou, Angew. Chem. 2012, 124, 243–245; Angew. Chem. Int. Ed. 2012, 51, 239–241;
- 1eX. M. Sun, Y. D. Li, Angew. Chem. 2004, 116, 3915–3919; Angew. Chem. Int. Ed. 2004, 43, 3827–3831.
- 2
- 2aY. G. Sun, Y. N. Xia, Science 2002, 298, 2176–2179;
- 2bY. G. Sun, B. T. Mayers, Y. N. Xia, Nano Lett. 2002, 2, 481–485;
- 2cY. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science 2004, 304, 711–714;
- 2dF. Caruso, R. A. Caruso, H. Mohwald, Science 1998, 282, 1111–1114;
- 2eQ. Zhang, W. S. Wang, J. Goebl, Y. D. Yin, Nano Today 2009, 4, 494–507;
- 2fH. C. Zeng, J. Mater. Chem. 2011, 21, 7511–7526;
- 2gH. C. Zeng, Curr. Nanosci. 2007, 3, 177–181;
- 2hY. Chen, H. Chen, L. Guo, Q. He, F. Chen, J. Zhou, J. Feng, J. Shi, ACS Nano 2010, 4, 529–539.
- 3D. P. Wang, H. C. Zeng, Chem. Mater. 2011, 23, 4886–4899.
- 4
- 4aH. G. Yang, H. C. Zeng, J. Phys. Chem. B 2004, 108, 3492–3495;
- 4bJ. H. Pan, X. W. Zhang, A. J. Du, D. D. Sun, J. O. Leckie, J. Am. Chem. Soc. 2008, 130, 11256–11257;
- 4cB. Wang, H. B. Wu, L. Zhang, X. W. Lou, Angew. Chem. 2013, 125, 4259–4262; Angew. Chem. Int. Ed. 2013, 52, 4165–4168;
- 4dA. Pan, H. B. Wu, L. Yu, X. W. Lou, Angew. Chem. 2013, 125, 2282–2286; Angew. Chem. Int. Ed. 2013, 52, 2226–2230;
- 4eX. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee, L. A. Archer, Adv. Mater. 2006, 18, 2325–2329.
- 5J. Li, H. C. Zeng, J. Am. Chem. Soc. 2007, 129, 15839–15847.
- 6
- 6aX. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891–2959;
- 6bD. H. Chen, F. Z. Huang, Y. B. Cheng, R. A. Caruso, Adv. Mater. 2009, 21, 2206–2210;
- 6cD. H. Chen, R. A. Caruso, Adv. Funct. Mater. 2013, 23, 1356–1374;
- 6dF. Sauvage, D. H. Chen, P. Comte, F. Z. Huang, L. P. Heiniger, Y. B. Cheng, R. A. Caruso, M. Graetzel, ACS Nano 2010, 4, 4420–4425;
- 6eD. H. Chen, F. Z. Huang, L. Cao, Y. B. Cheng, R. A. Caruso, Chem. Eur. J. 2012, 18, 13762–13769;
- 6fD. H. Chen, L. Cao, F. Z. Huang, P. Imperia, Y. B. Cheng, R. A. Caruso, J. Am. Chem. Soc. 2010, 132, 4438–4444.
- 7
- 7aC. H. Rhee, J. S. Lee, S. H. Chung, J. Mater. Res. 2005, 20, 3011–3020;
- 7bB. Zhao, F. Chen, X. N. Gu, J. L. Zhang, Chem. Asian J. 2010, 5, 1546–1549;
- 7cB. Zhao, F. Chen, Y. C. Jiao, J. L. Zhang, J. Mater. Chem. 2010, 20, 7990–7997.
- 8T. Sugimoto, T. Kojima, J. Phys. Chem. C 2008, 112, 18760–18771.
- 9J. Biener, E. Farfan-Arribas, M. Biener, C. M. Friend, R. J. Madix, J. Chem. Phys. 2005, 123, 094705.
- 10
- 10aH. X. Li, Z. F. Bian, J. Zhu, D. Q. Zhang, G. S. Li, Y. N. Huo, H. Li, Y. F. Lu, J. Am. Chem. Soc. 2007, 129, 8406–8407;
- 10bX. F. Chen, J. B. Liu, H. Wang, Y. L. Ding, Y. X. Sun, H. Yan, J. Mater. Chem. A 2013, 1, 877–883;
- 10cZ. H. Dong, X. Y. Lai, J. E. Halpert, N. L. Yang, L. X. Yi, J. Zhai, D. Wang, Z. Y. Tang, L. Jiang, Adv. Mater. 2012, 24, 1046–1049;
- 10dX. Wang, M. Y. Liao, Y. T. Zhong, J. Y. Zheng, W. Tian, T. Y. Zhai, C. Y. Zhi, Y. Ma, J. N. A. Yao, Y. Bando, D. Golberg, Adv. Mater. 2012, 24, 3421–3425.
- 11
- 11aW. Li, Y. Deng, Z. Wu, X. Qian, J. Yang, Y. Wang, D. Gu, F. Zhang, B. Tu, D. Zhao, J. Am. Chem. Soc. 2011, 133, 15830–15833;
- 11bX. C. Wang, J. C. Yu, C. M. Ho, Y. D. Hou, X. Z. Fu, Langmuir 2005, 21, 2552–2559;
- 11cJ. G. Yu, Y. R. Su, B. Cheng, Adv. Funct. Mater. 2007, 17, 1984–1990.
- 12
- 12aJ. B. Joo, Q. Zhang, M. Dahl, I. Lee, J. Goebl, F. Zaera, Y. D. Yin, Energy Environ. Sci. 2012, 5, 6321–6327;
- 12bJ. B. Joo, I. Lee, M. Dahl, G. D. Moon, F. Zaera, Y. D. Yin, Adv. Funct. Mater. 2013, DOI: ;
- 12cZ. Zhang, Y. Zhou, Y. Zhang, S. Zhou, J. Shi, J. Kong, S. Zhang, Dalton Trans. 2013, 42, 5004–5012.