[BH3C(NO2)3]−: The First Room-Temperature Stable (Trinitromethyl)borate†
Guillaume Bélanger-Chabot
Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661 (USA)
Search for more papers by this authorDr. Martin Rahm
Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661 (USA)
Search for more papers by this authorProf. Ralf Haiges
Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661 (USA)
Search for more papers by this authorCorresponding Author
Prof. Karl O. Christe
Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661 (USA)
Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661 (USA)Search for more papers by this authorGuillaume Bélanger-Chabot
Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661 (USA)
Search for more papers by this authorDr. Martin Rahm
Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661 (USA)
Search for more papers by this authorProf. Ralf Haiges
Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661 (USA)
Search for more papers by this authorCorresponding Author
Prof. Karl O. Christe
Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661 (USA)
Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661 (USA)Search for more papers by this authorThis work was supported by the Office of Naval Research (ONR), the Air Force Office of Scientific Research (AFOSR), the Defense Threat Reduction Agency (DTRA), and the National Science Foundation (NSF). The X-ray diffractometer was supported by NSF CRIF grant 1048807. Guillaume Bélanger-Chabot acknowledges support from the Fonds de recherche du Québec-Nature et technologies (FQRNT) and from the Natural Sciences and Engineering Research Council of Canada (NSERC).
Graphical Abstract
The marriage of fire and water: The strongly oxidizing trinitromethyl and strongly reducing BH3 groups were successfully combined for the first time in the novel [BH3C(NO2)3]− ion. The stability at room temperature of the new (trinitromethyl)borate is in sharp contrast to the behavior of [BCl3C(NO2)3]−, which already decomposes at −20 °C.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201305602_sm_miscellaneous_information.pdf2.4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Hantzsch, A. Rinckenberger, Ber. Dtsch. Chem. Ges. 1899, 32, 628–641.
- 2Selected examples of covalently bonded nitroformates :
- 2aS. L. Ioffe, L. M. Mkarenkova, V. M. Shitkin, M. V. Kashutina, V. A. Tartakovskii, Izv. Akad. Nauk SSSR Ser. Khim. 1973, 1, 203–204;
- 2bV. I. Erashko, S. A. Shevelev, Izv. Akad. Nauk SSSR Ser. Khim. 1985, 2, 439–442;
- 2cV. Thottempudi, T. K. Kim, K.-H. Chung, J. S. Kim, Bull. Korean Chem. Soc. 2009, 30, 2152–2154;
- 2dV. Thottempudi, H. Gao, J. M. Shreeve, J. Am. Chem. Soc. 2011, 133, 6464–6471;
- 2eS. S. G. Novikov, T. I. Godovikova, V. A. Tartakovskii, Izv. Akad. Nauk SSSR Otd. Khim. Nauk 1960, 863–865.
- 3Selected examples of nitroformate salts :
- 3aA. K. Macbeth, W. B. Orr, J. Chem. Soc. 1932, 534–543;
- 3bG. S. Hammond, W. D. Emmons, C. O. Parker, B. M. Graybill, J. H. Waters, M. F. Hawthorne, Tetrahedron 1963, 19, Supplement 1, 177–195;
- 3cA. A. Gakh, J. C. Bryan, M. N. Burnett, P. V. Bonnesen, J. Mol. Struct. 2000, 520, 221–228;
- 3dM. Göbel, T. M. Klapötke, Z. Anorg. Allg. Chem. 2007, 633, 1006–1017.
- 4Selected examples of reactions involving nitroform or the nitroformate anion:
- 4aL. A. Kaplan, M. J. Kamlet, J. Org. Chem. 1962, 27, 780–785;
- 4bV. I. Erashko, S. A. Shevelev, A. A. Fainzil’berg, Izv. Akad. Nauk SSSR Ser. Khim. 1968, 9, 2117–2121;
- 4cS. A. Shevelev, V. I. Erashko, B. G. Sankov, A. A. Fainzil’berg, Izv. Akad. Nauk SSSR Ser. Khim. 1968, 2, 382–388;
- 4dA. A. Gidaspov, V. V. Bakharev, I. K. Kukushkin, Russ. Chem. Bull. 2009, 58, 2154–2163.
- 5Y. Huang, H. Gao, B. Twamley, J. M. Shreeve, Eur. J. Inorg. Chem. 2007, 2025–2030.
- 6K. V. Titova, E. I. Kolmakova, V. Y. Rosolovskii, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1977, 26, 1822–1825.
- 7The fact that hydrazinium nitroformate is the only trinitromethyl compound of industrial significance illustrates the challenge of obtaining nitroformate derivatives of sufficient stability. (Aerospace Propulsion Products B.V. web: http://www.appbv.nl/).
- 8A. F. Holleman, E. Wiberg in Inorganic Chemistry, 1st English ed. ), Academic Press, San Diego, 2001, p. 131.
- 9M. W. Chase, Jr., NIST-JANAF Themochemical Tables, 4th ed., American Institute of Physics, Melville, NY, 1998, pp. 1–1951 (J. Phys. Chem. Ref. Data, Monograph 9).
- 10In the past few years, the potential of Group 13 compounds as HEDMs has been recognized :
- 10aR. Haiges, G. Belanger-Chabot, K. O. Christe, 2013, unpublished results;
- 10bE.-C. Koch, T. M. Klapötke, Propellants Explos. Pyrotech. 2012, 37, 335–344;
- 10cR. Haiges, C. B. Jones, K. O. Christe, Inorg. Chem. 2013, 52, 5551–5558;
- 10dC. J. Snyder, P. D. Martin, M. J. Heeg, C. H. Winter, Chem. Eur. J. 2013, 19, 3306–3310;
- 10eC. B. Jones, R. Haiges, T. Schroer, K. O. Christe, Angew. Chem. 2006, 118, 5103–5106; Angew. Chem. Int. Ed. 2006, 45, 4981–4984.
- 11
- 11aK. V. Titova, Russ. J. Inorg. Chem. 2002, 47, 1121–1129;
- 11bO. A. Luk’yanov, O. V. Anikin, V. P. Gorelik, V. A. Tartakovsky, Russ. Chem. Bull. 1994, 43, 1457–1461.
- 12D. J. Grant, D. A. Dixon, D. Camaioni, R. G. Potter, K. O. Christe, Inorg. Chem. 2009, 48, 8811–8821.
- 13S. S. Novikov, V. I. Slovetskii, S. A. Shevelev, A. A. Fainzil’berg, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1962, 11, 552–559.
10.1007/BF00904751 Google Scholar
- 14NMR data for [BH3C(NO2)3]− in CD3CN at 400 MHz unless otherwise stated : 1H NMR (ref. to CHD2CN) δ=1.09 ppm (1:1:1:1 quart., 1J (1H,11B)=94 Hz); 11B NMR (ref. to BF3⋅Et2O) δ=−23.8 ppm (quart., 1J (11B,1H)=94 Hz); 13C NMR (500 MHz, glyme, ref. to TMS) δ=151.1 ppm (quart., 1J (11B,13C)=32 Hz and 14N NMR (500 MHz, ref. to CH3NO2): δ=−7.2 ppm (s, Δυ1/2=14 Hz) (predicted δ=−6 ppm).
- 15NMR data for [BH2{C(NO2)3}2]− in glyme at 500 MHz: 11B NMR:(δ=−17.6 ppm (t, 1J (11B,1H)=104 Hz); 14N NMR: δ=−15.0 ppm (s).
- 16M. Göbel, T. M. Klapötke, Acta Crystallogr. Sect. C 2007, 63, o 562–o564.
- 17H. Schödel, R. Dienelt, H. Bock, Acta Crystallogr. Sect. C 1994, 50, 1790–1792.
- 18V. A. Tartakovskii, L. A. Nikonova, S. S. Novikov, Izv. Akad. Nauk SSSR Ser. Khim. 1967, 706–708.
- 19
- 19aR. Haiges, J. A. Boatz, A. Vij, M. Gerken, S. Schneider, T. Schroer, K. O. Christe, Angew. Chem. 2003, 115, 6027–6031;
10.1002/ange.200352680 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 5847–5851;
- 19bR. Haiges, J. A. Boatz, S. Schneider, T. Schroer, M. Yousufuddin, K. O. Christe, Angew. Chem. 2004, 116, 3210–3214;
10.1002/ange.200454156 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 3148–3152.
- 20Dinitramide salts ([N(NO2)2]−), for example, are stable compounds but they slowly decompose when exposed to light.
- 21D. J. Grant, M. H. Matus, J. R. Switzer, D. A. Dixon, J. S. Francisco, K. O. Christe, J. Phys. Chem. A 2008, 112, 3145–3156.
- 22
- 22aJ. S. Murray, T. Brinck, P. Politzer, Chem. Phys. 1996, 204, 289–299;
- 22bP. Politzer, J. S. Murray, J. Phys. Chem. A 1998, 102, 1018–1020.
- 23B. M. Rice, S. V. Pai, J. Hare, Combust. Flame 1999, 118, 445–458.
- 24
- 24aJ. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 1999, 110, 2822–2827;
- 24bJ. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532–6542.
- 25Gaussian 09, Revision A.02; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. K. Staroverov, R., J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox Gaussian, Inc., Wallingford CT: 2009.
- 26
- 26aR. Valero, J. R. B. Gomes, D. G. Truhlar, F. Illas, J. Chem. Phys. 2008, 129, 124710–124717;
- 26bY. Zhao, D. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241;
- 26cY. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 2011, 7, 669–676.
- 27A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- 28
- 28aM. Rahm, T. Brinck, Chem. Eur. J. 2010, 16, 6590–6600;
- 28bM. Rahm, S. V. Dvinskikh, I. Furó, T. Brinck, Angew. Chem. 2011, 123, 1177–1180; Angew. Chem. Int. Ed. 2011, 50, 1145–1148.