Detection of Individual Vapors and Their Mixtures Using a Selectivity-Tunable Three-Dimensional Network of Plasmonic Nanoparticles†
Corresponding Author
Dr. Radislav A. Potyrailo
GE Global Research Center, Niskayuna, NY 12309 (USA)
GE Global Research Center, Niskayuna, NY 12309 (USA)Search for more papers by this authorMichael Larsen
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorOrrie Riccobono
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorCorresponding Author
Dr. Radislav A. Potyrailo
GE Global Research Center, Niskayuna, NY 12309 (USA)
GE Global Research Center, Niskayuna, NY 12309 (USA)Search for more papers by this authorMichael Larsen
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorOrrie Riccobono
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorWe thank M. Pietrzykowski, W. P. Hall, M. Palacios, J. Grande, and Z. Tang for useful discussions. This work was supported by US ARO, contract number W911NF-10-C-0069 and by GE’s Advanced Technology Program. The views and conclusions contained here are those of the authors and should not be interpreted as presenting the official policies or position of US ARO or the US Government.
Graphical Abstract
Sensor selectivity: Selective detection of individual vapors and their mixtures is achieved by using a single three-dimensional networked film of organothiol-functionalized plasmonic nanoparticles (see picture). This approach gives a new perspective for sensing, where tunable selectivity is achieved within a single sensing film, rather than from an array of separate conventional sensors.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201305303_sm_miscellaneous_information.pdf333.1 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Baltes, J. Hesse, J. G. Korvink, Sensors Update, Vol. 9, VCH, Weinheim, 2001;
- 1bJ. Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, Springer, New York, 2004;
- 1cS. Soloman, Sensors Handbook, 2nd ed., McGraw-Hill, New York, 2010.
- 2
- 2aJ. Janata, Principles of Chemical Sensors, 2nd ed., Springer, New York, 2009;
- 2bR. A. Potyrailo, R. R. Naik, Annu. Rev. Mater. Res. 2013, 43, 307.
- 3
- 3aP. C. Jurs, G. A. Bakken, H. E. McClelland, Chem. Rev. 2000, 100, 2649;
- 3bF. Röck, N. Barsan, U. Weimar, Chem. Rev. 2008, 108, 705;
- 3cR. A. Potyrailo, V. M. Mirsky, Chem. Rev. 2008, 108, 770;
- 3dS. E. Stitzel, M. J. Aernecke, D. R. Walt, Annu. Rev. Biomed. Eng. 2011, 13, 1;
- 3eS. Marco, A. Gutierrez-Galvez, IEEE Sens. J. 2012, 12, 3189.
- 4K. Persaud, G. Dodd, Nature 1982, 299, 352.
- 5
- 5aS. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, K. S. Suslick, Nat. Chem. 2009, 1, 562;
- 5bG. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, Nat. Nanotechnol. 2009, 4, 669;
- 5cL. D. Bonifacio, G. A. Ozin, A. C. Arsenault, Small 2011, 7, 3153;
- 5dF. I. Bohrer, E. Covington, C. Kurdak, E. T. Zellers, Anal. Chem. 2011, 83, 3687;
- 5eK. P. Raymond, I. B. Burgess, M. H. Kinney, M. Lončar, J. Aizenberg, Lab Chip 2012, 12, 3666.
- 6
- 6aA. Hierlemann, R. Gutierrez-Osuna, Chem. Rev. 2008, 108, 563;
- 6bR. A. Potyrailo, C. Surman, N. N. Nagraj, A. Burns, Chem. Rev. 2011, 111, 7315.
- 7
- 7aR. A. Potyrailo, W. G. Morris, Anal. Chem. 2007, 79, 45;
- 7bR. A. Potyrailo, N. Nagraj, C. Surman, H. Boudries, H. Lai, J. M. Slocik, N. Kelley-Loughnane, R. R. Naik, TrAC Trends Anal. Chem. 2012, 40, 133;
- 7cB. Li, D. N. Lambeth, Nano Lett. 2008, 8, 3563;
- 7dS. Rumyantsev, G. Liu, M. S. Shur, R. A. Potyrailo, A. A. Balandin, Nano Lett. 2012, 12, 2294;
- 7eR. A. Potyrailo, A. M. Leach, C. M. Surman, ACS Comb. Sci. 2012, 14, 170;
- 7fR. A. Potyrailo, Z. Ding, M. D. Butts, S. E. Genovese, T. Deng, IEEE Sens. J. 2008, 8, 815;
- 7gR. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, E. Olson, Nat. Photonics 2007, 1, 123;
- 7hB. Rout, L. Unger, G. Armony, M. A. Iron, D. Margulies, Angew. Chem. 2012, 124, 12645;
10.1002/ange.201206374 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 12477;
- 7iN. A. Joy, M. I. Nandasiri, P. H. Rogers, W. Jiang, T. Varga, S. V. N. T. Kuchibhatla, S. Thevuthasan, M. A. Carpenter, Anal. Chem. 2012, 84, 5025.
- 8
- 8aC.-S. Cheng, Y.-Q. Chen, C.-J. Lu, Talanta 2007, 73, 358;
- 8bK.-J. Chen, C.-J. Lu, Talanta 2010, 81, 1670;
- 8cL. E. Kreno, J. T. Hupp, R. P. Van Duyne, Anal. Chem. 2010, 82, 8042;
- 8dM. C. Dalfovo, R. C. Salvarezza, F. J. Ibañez, Anal. Chem. 2012, 84, 4886;
- 8eN. A. Joy, P. H. Rogers, M. I. Nandasiri, S. Thevuthasan, M. A. Carpenter, Anal. Chem. 2012, 84, 10437.
- 9
- 9aH. Wohltjen, A. W. Snow, Anal. Chem. 1998, 70, 2856;
- 9bT. E. Mlsna, S. Cemalovic, M. Warburton, S. T. Hobson, D. Mlsna, S. V. Patel, Sens. Actuators B 2006, 116, 192;
- 9cJ. W. Grate, D. A. Nelson, R. Skaggs, Anal. Chem. 2003, 75, 1868.
- 10C.-L. Li, Y.-F. Chen, M.-H. Liu, C.-J. Lu, Sens. Actuators B 2012, 169, 349.
- 11
- 11aH.-L. Zhang, S. D. Evans, J. R. Henderson, R. E. Miles, T.-H. Shen, Nanotechnology 2002, 13, 439;
- 11bW. H. Steinecker, M. P. Rowe, E. T. Zellers, Anal. Chem. 2007, 79, 4977.
- 12M. Brust, D. Bethell, C. J. Kiely, D. J. Schiffrin, Langmuir 1998, 14, 5425.
- 13
- 13aF. P. Zamborini, M. C. Leopold, J. F. Hicks, P. J. Kulesza, M. A. Malik, R. W. Murray, J. Am. Chem. Soc. 2002, 124, 8958;
- 13bY. Joseph, B. Guse, G. Nelles, Chem. Mater. 2009, 21, 1670;
- 13cR. A. Potyrailo, C. Surman, M. Pietrzykowski, M. Larsen, SPIE Photonics West BIOS Conference “Plasmonics in Biology and Medicine VIII”, January 23–24, 2011, San Francisco, CA 2011, Paper 7911.
- 14H. Martens, M. Martens, Multivariate Analysis of Quality. An Introduction, Wiley, Chichester, 2001.
10.1088/0957-0233/12/10/708 Google Scholar
- 15
- 15aP. A. Snow, E. K. Squire, P. S. J. Russell, L. T. Canham, J. Appl. Phys. 1999, 86, 1781;
- 15bY. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, M. J. Sailor, Science 2003, 299, 2045;
- 15cH. Yang, P. Jiang, Appl. Phys. Lett. 2011, 98, 011104;
- 15dI. B. Burgess, N. Koay, K. P. Raymond, M. Kolle, M. Lončar, J. Aizenberg, ACS Nano 2012, 6, 1427;
- 15eL. D. Bonifacio, D. P. Puzzo, S. Breslau, B. M. Willey, A. McGeer, G. A. Ozin, Adv. Mater. 2010, 22, 1351.
- 16
- 16aR. B. Bjorklund, S. Zangooie, H. Arwin, Appl. Phys. Lett. 1996, 69, 3001;
- 16bA. M. Ruminski, M. M. Moore, M. J. Sailor, Adv. Funct. Mater. 2008, 18, 3418.
- 17R. A. Potyrailo, R. J. May, T. M. Sivavec, Sens. Lett. 2004, 2, 31.
- 18
- 18aC. Jin, P. Kurzawski, A. Hierlemann, E. T. Zellers, Anal. Chem. 2008, 80, 227;
- 18bN. Garg, A. Mohanty, N. Lazarus, L. Schultz, T. R. Rozzi, S. Santhanam, L. Weiss, J. L. Snyder, G. K. Fedder, R. Jin, Nanotechnology 2010, 21, 405501.
- 19
- 19aM.-D. Hsieh, E. T. Zellers, Anal. Chem. 2004, 76, 1885;
- 19bC. Jin, E. T. Zellers, Anal. Chem. 2008, 80, 7283.
- 20
- 20aF. Tsow, E. Forzani, A. Rai, R. Wang, R. Tsui, S. Mastroianni, C. Knobbe, A. J. Gandolfi, N. J. Tao, IEEE Sens. J. 2009, 9, 1734;
- 20bP. Anzenbacher, Jr., F. Li, M. A. Palacios, Angew. Chem. 2012, 124, 2395;
10.1002/ange.201105629 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 2345;
- 20cP. Preechaburana, M. C. Gonzalez, A. Suska, D. Filippini, Angew. Chem. 2012, 124, 11753;
10.1002/ange.201206804 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 11585.