Conductance Switching and Mechanisms in Single-Molecule Junctions†
Chuancheng Jia
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
These authors contributed equally to this work.
Search for more papers by this authorJinying Wang
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
These authors contributed equally to this work.
Search for more papers by this authorChangjiang Yao
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China)
Search for more papers by this authorYang Cao
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Search for more papers by this authorProf. Yuwu Zhong
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China)
Search for more papers by this authorProf. Zhirong Liu
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Zhongfan Liu
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)Search for more papers by this authorCorresponding Author
Prof. Xuefeng Guo
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)Search for more papers by this authorChuancheng Jia
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
These authors contributed equally to this work.
Search for more papers by this authorJinying Wang
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
These authors contributed equally to this work.
Search for more papers by this authorChangjiang Yao
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China)
Search for more papers by this authorYang Cao
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Search for more papers by this authorProf. Yuwu Zhong
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China)
Search for more papers by this authorProf. Zhirong Liu
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Zhongfan Liu
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)Search for more papers by this authorCorresponding Author
Prof. Xuefeng Guo
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)Search for more papers by this authorWe acknowledge primary financial support from MOST (grant number 2012CB921404) and NSFC (grant numbers 21225311 and 51121091).
Graphical Abstract
A molecular switch: The conductance of a new molecular device based on graphene–molecule junctions was reproducibly switched between open and closed states under irradiation of external light (see picture). Three photochromic diarylethene derivatives with different substituents were used as key elements of the molecular devices.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201304301_sm_miscellaneous_information.pdf642.1 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Aviram, M. A. Ratner, Chem. Phys. Lett. 1974, 29, 277–283;
- 1bM. Galperin, M. A. Ratner, A. Nitzan, A. Troisi, Science 2008, 319, 1056–1060;
- 1cR. L. McCreery, A. J. Bergren, Adv. Mater. 2009, 21, 4303–4322.
- 2
- 2aN. Weibel, S. Grunder, M. Mayor, Org. Biomol. Chem. 2007, 5, 2343–2353;
- 2bC. Jia, X. Guo, Chem. Soc. Rev. 2013, 42, 5642–5660;
- 2cA. K. Feldman, M. L. Steigerwald, X. Guo, C. Nuckolls, Acc. Chem. Res. 2008, 41, 1731–1741;
- 2dH. Song, M. A. Reed, T. Lee, Adv. Mater. 2011, 23, 1583–1608.
- 3
- 3aM. Irie, Chem. Rev. 2000, 100, 1685–1716;
- 3bB. L. Feringa, Acc. Chem. Res. 2001, 34, 504–513.
- 4
- 4aJ. Li, G. Speyer, O. F. Sankey, Phys. Rev. Lett. 2004, 93, 248302;
- 4bJ. Huang, Q. X. Li, H. B. Su, J. L. Yang, Chem. Phys. Lett. 2009, 479, 120–124;
- 4cM. K. Ashraf, N. A. Bruque, J. L. Tan, G. J. O. Beran, R. K. Lake, J. Chem. Phys. 2011, 134, 024524.
- 5
- 5aJ. He, F. Chen, P. A. Liddell, J. Andreasson, S. D. Straight, D. Gust, T. A. Moore, A. L. Moore, J. Li, O. F. Sankey, S. M. Lindsay, Nanotechnology 2005, 16, 695–702;
- 5bN. Katsonis, T. Kudernac, M. Walko, S. J. van der Molen, B. J. van Wees, B. L. Feringa, Adv. Mater. 2006, 18, 1397–1400;
- 5cS. J. van der Molen, J. H. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, C. Schonenberger, Nano Lett. 2009, 9, 76–80;
- 5dY. Kim, T. J. Hellmuth, D. Sysoiev, F. Pauly, T. Pietsch, J. Wolf, A. Erbe, T. Huhn, U. Groth, U. E. Steiner, E. Scheer, Nano Lett. 2012, 12, 3736–3742;
- 5eD. Dulic, S. J. van der Molen, T. Kudernac, H. T. Jonkman, J. J. D. de Jong, T. N. Bowden, J. van Esch, B. L. Feringa, B. J. van Wees, Phys. Rev. Lett. 2003, 91, 207402;
- 5fA. C. Whalley, M. L. Steigerwald, X. Guo, C. Nuckolls, J. Am. Chem. Soc. 2007, 129, 12590–12591.
- 6T. Tsujioka, M. Irie, J. Photochem. Photobiol. C 2010, 11, 1–14.
- 7
- 7aK. Moth-Poulsen, T. Bjornholm, Nat. Nanotechnol. 2009, 4, 551–556;
- 7bS. Liu, Z. Wei, Y. Cao, L. Gan, Z. Wang, W. Xu, X. Guo, D. Zhu, Chem. Sci. 2011, 4, 796–802.
- 8W. R. Browne, J. J. D. de Jong, T. Kudernac, M. Walko, L. N. Lucas, K. Uchida, J. H. van Esch, B. L. Feringa, Chem. Eur. J. 2005, 11, 6414–6429.
- 9
- 9aY. Cao, S. H. Dong, S. Liu, L. He, L. Gan, X. M. Yu, M. L. Steigerwald, X. S. Wu, Z. F. Liu, X. Guo, Angew. Chem. 2012, 124, 12394–12398; Angew. Chem. Int. Ed. 2012, 51, 12228–12232;
- 9bY. Cao, S. H. Dong, S. Liu, Z. F. Liu, X. Guo, Angew. Chem. 2013, 125, 3998–4002; Angew. Chem. Int. Ed. 2013, 52, 3906–3910.
- 10C. Jia, J. Jiang, L. Gan, X. Guo, Sci. Rep. 2012, 2, 707.
- 11J. M. Beebe, B. Kim, J. W. Gadzuk, C. D. Frisbie, J. G. Kushmerick, Phys. Rev. Lett. 2006, 97, 026801.
- 12Y. Imry, R. Landauer, Rev. Mod. Phys. 1999, 71, S 306–S312.
- 13M. Araidai, M. Tsukada, Phys. Rev. B 2010, 81, 235114.
- 14J. Taylor, H. Guo, J. Wang, Phys. Rev. B 2001, 63, 245407.
- 15C. M. Guédon, H. Valkenier, T. Markussen, K. S. Thygesen, J. C. Hummelen, S. J. van der Molen, Nat. Nanotechnol. 2012, 7, 305–309.