Three-Dimensional Macroscopic Assemblies of Low-Dimensional Carbon Nitrides for Enhanced Hydrogen Evolution†
Dr. Young-Si Jun
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 (USA)
Search for more papers by this authorDr. Jihee Park
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 (USA)
Search for more papers by this authorSun Uk Lee
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea)
Search for more papers by this authorProf. Arne Thomas
Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin (Germany)
Search for more papers by this authorProf. Won Hi Hong
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Galen D. Stucky
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 (USA)
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 (USA)Search for more papers by this authorDr. Young-Si Jun
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 (USA)
Search for more papers by this authorDr. Jihee Park
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 (USA)
Search for more papers by this authorSun Uk Lee
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea)
Search for more papers by this authorProf. Arne Thomas
Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin (Germany)
Search for more papers by this authorProf. Won Hi Hong
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Galen D. Stucky
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 (USA)
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 (USA)Search for more papers by this authorThis work was supported by the University of California Lab Fees Research Program and the Project “Light2Hydrogen” of the BMBF (03IS2071D). The MRL Shared Experimental Facilities are supported by the MRSEC Program of the NSF under Award No. DMR 1121053; a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org). We thank Dr. Guang Wu for assistance with single-crystal analysis.
Graphical Abstract
Simple organic cooperative assembly of triazine molecules leads to three-dimensional macroscopic assemblies of low-dimensional graphitic carbon nitrides (g-CNs), for example, nanoparticles, nanotubes, and nanosheets. The approach enables the characterization of the cooperative properties and photocatalytic activities of low-dimensional g-CN materials in hydrogen evolution reactions from water under visible light.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201304034_sm_miscellaneous_information.pdf12.3 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. Ball, L. Garwin, Nature 1992, 355, 761–766;
- 1bA. N. Goldstein, C. M. Echer, A. P. Alivisatos, Science 1992, 256, 1425–1427.
- 2
- 2aM. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 1998, 281, 2013–2016;
- 2bT. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El Sayed, Science 1996, 272, 1924–1926.
- 3
- 3aZ. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001, 291, 1947–1949;
- 3bR. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 1992, 360, 444–446;
- 3cM. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee, N. Khazanovich, Nature 1993, 366, 324–327.
- 4Z. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei, H. M. Cheng, Nat. Mater. 2011, 10, 424–428.
- 5M. Li, H. Schnablegger, S. Mann, Nature 1999, 402, 393–395.
- 6Y. S. Zhao, H. B. Fu, F. Q. Hu, A. D. Peng, J. N. Yao, Adv. Mater. 2007, 19, 3554–3558.
- 7Y. S. Zhao, H. B. Fu, A. D. Peng, Y. Ma, D. B. Xiao, J. N. Yao, Adv. Mater. 2008, 20, 2859–2876.
- 8E. Kroke, M. Schwarz, Coord. Chem. Rev. 2004, 248, 493–532.
- 9A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Muller, R. Schlogl, J. M. Carlsson, J. Mater. Chem. 2008, 18, 4893–4908.
- 10Y. Wang, X. C. Wang, M. Antonietti, Angew. Chem. 2012, 124, 70–92; Angew. Chem. Int. Ed. 2012, 51, 68–89.
- 11
- 11aM. Groenewolt, M. Antonietti, Adv. Mater. 2005, 17, 1789–1792;
- 11bY. J. Cui, Z. X. Ding, X. Z. Fu, X. C. Wang, Angew. Chem. 2012, 124, 11984–11988; Angew. Chem. Int. Ed. 2012, 51, 11814–11818;
- 11cP. Niu, L. L. Zhang, G. Liu, H. M. Cheng, Adv. Funct. Mater. 2012, 22, 4763–4770;
- 11dS. B. Yang, Y. J. Gong, J. S. Zhang, L. Zhan, L. L. Ma, Z. Y. Fang, R. Vajtai, X. C. Wang, P. M. Ajayan, Adv. Mater. 2013, 25, 2452–2456.
- 12
- 12aY.-S. Jun, E. Z. Lee, X. Wang, W. H. Hong, G. D. Stucky, A. Thomas, Adv. Funct. Mater. 2013, 23, 3661–3667;
- 12bM. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc. 2013, 135, 7118–7121;
- 12cK. Kailasam, J. D. Epping, A. Thomas, S. Losse, H. Junge, Energy Environ. Sci. 2011, 4, 4668–4674.
- 13A. Ranganathan, V. R. Pedireddi, G. Sanjayan, K. N. Ganesh, C. N. R. Rao, J. Mol. Struct. 2000, 522, 87–94.
- 14M. J. Bojdys, J. O. Muller, M. Antonietti, A. Thomas, Chem. Eur. J. 2008, 14, 8177–8182.
- 15X. J. Zhang, X. H. Zhang, W. S. Shi, X. M. Meng, C. S. Lee, S. T. Lee, Angew. Chem. 2007, 119, 1547–1550; Angew. Chem. Int. Ed. 2007, 46, 1525–1528.
- 16Y. S. Jun, W. H. Hong, M. Antonietti, A. Thomas, Adv. Mater. 2009, 21, 4270–4274.
- 17S. Ahn, J. Prakasha Reddy, B. M. Kariuki, S. Chatterjee, A. Ranganathan, V. R. Pedireddi, C. N. R. Rao, K. D. M. Harris, Chem. Eur. J. 2005, 11, 2433–2439.
- 18E. Z. Lee, Y. S. Jun, W. H. Hong, A. Thomas, M. M. Jin, Angew. Chem. 2010, 122, 9900–9904; Angew. Chem. Int. Ed. 2010, 49, 9706–9710.
- 19J. Zhang, G. Zhang, X. Chen, S. Lin, L. Moehlmann, G. Dolega, G. Lipner, M. Antonietti, S. Blechert, X. Wang, Angew. Chem. 2012, 124, 3237–3241; Angew. Chem. Int. Ed. 2012, 51, 3183–3187.
- 20A. J. Du, S. Sanvito, Z. Li, D. W. Wang, Y. Jiao, T. Liao, Q. Sun, Y. H. Ng, Z. H. Zhu, R. Amal, S. C. Smith, J. Am. Chem. Soc. 2012, 134, 4393–4397.
- 21
- 21aF. Yang, M. Lublow, S. Orthmann, C. Merschjann, T. Tyborski, M. Rusu, S. Kubala, A. Thomas, R. Arrigo, M. Haevecker, T. Schedel-Niedrig, ChemSusChem 2012, 5, 1227–1232;
- 21bK. Kailasam, J. Schmidt, H. Bildirir, G. Zhang, S. Blechert, X. Wang, A. Thomas, Macromol. Rapid Commun. 2013, 34, 1008–1013.