Nickel/Nickel(II) Oxide Nanoparticles Anchored onto Cobalt(IV) Diselenide Nanobelts for the Electrochemical Production of Hydrogen†
Yun-Fei Xu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab
These authors contributed equally to this work.
Search for more papers by this authorDr. Min-Rui Gao
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab
These authors contributed equally to this work.
Search for more papers by this authorYa-Rong Zheng
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab
Search for more papers by this authorDr. Jun Jiang
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab
Search for more papers by this authorCorresponding Author
Prof. Dr. Shu-Hong Yu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulabSearch for more papers by this authorYun-Fei Xu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab
These authors contributed equally to this work.
Search for more papers by this authorDr. Min-Rui Gao
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab
These authors contributed equally to this work.
Search for more papers by this authorYa-Rong Zheng
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab
Search for more papers by this authorDr. Jun Jiang
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab
Search for more papers by this authorCorresponding Author
Prof. Dr. Shu-Hong Yu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulabSearch for more papers by this authorS. H. Yu acknowledges the funding support from the National Basic Research Program of China (grant number 2010CB934700), the National Natural Science Foundation of China (grant numbers 91022032, 91227103, and 21061160492), the Ministry of Science and Technology of China (grant number 2012BAD32B05-4), the Chinese Academy of Sciences (grant number KJZD-EW-M01-1), and the Principal Investigator Award by the National Synchrotron Radiation Laboratory at the University of Science and Technology of China.
Graphical Abstract
Not noble but effective: A novel Ni/NiO/CoSe2 hybrid material has been synthesized as an efficient catalyst for the hydrogen evolution reaction (HER; see picture). This new catalyst has a cathodic onset potential at −0.03 V, a Tafel slope of 39 mV per decade, and represents currently the best Pt-free electrocatalyst for the HER in acidic medium.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201303495_sm_miscellaneous_information.pdf450.5 KB | miscellaneous_information |
anie_201303495_sm_movie_s1.wmv12.2 MB | movie_s1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Mazloomi, C. Gomes, Renewable Sustainable Energy Rev. 2012, 16, 3024–3033;
- 1bB. E. Logan, S. E. Oh, I. S. Kim, S. V. Ginkel, Environ. Sci. Technol. 2002, 36, 2530–2535;
- 1cJ. Rossmeisl, K. Dimitrievski, P. Siegbahn, J. K. Norskov, J. Phys. Chem. C 2007, 111, 18821–18823;
- 1dK. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655–2661;
- 1eL. Y. Zhang, C. X. Guo, Z. M. Cui, J. Guo, Z. L. Dong, C. M. Li, Chem. Eur. J. 2012, 18, 15693–15698;
- 1fY. Qiao, S. J. Bao, C. M. Li, Energy Environ. Sci. 2010, 3, 544–553;
- 1gM. R. Gao, Y. F. Xu, J. Jiang, S. H. Yu, Chem. Soc. Rev. 2013, 42, 2986–3017.
- 2
- 2aA. B. Laursen, A. S. Varela, F. Dionigi, H. Fanchiu, C. Miller, O. L. Trinhammer, J. Rossmeisl, S. Dahl, J. Chem. Educ. 2012, 89, 1595–1599;
- 2bR. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011, 334, 1256–1260;
- 2cP. A. Thiel, Surf. Sci. Rep. 1987, 7, 211–385;
- 2dJ. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Norskov, Nat. Mater. 2006, 5, 909–913.
- 3
- 3aJ. Y. Yang, S. T. Chen, W. G. Gougherty, W. S. Kassel, R. M. Bullock, D. L. DuBois, S. Raugei, M. Dupuis, M. R. DuBois, Chem. Commun. 2010, 46, 8618–8620;
- 3bA. Le Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin, M. Fontecave, Science 2009, 326, 1384–1387;
- 3cU. J. Kilgore, J. A. S. Roberts, D. H. Pool, A. M. Appel, M. P. Stewart, M. R. DuBois, W. G. Dougherty, W. S. Kaeel, R. M. Bullock, D. L. DuBois, J. Am. Chem. Soc. 2011, 133, 5861–5872;
- 3dJ. Y. Yang, R. M. Bullock, W. J. Shaw, B. Twamley, K. Fraze, M. R. DuBois, D. L. DuBois, J. Am. Chem. Soc. 2009, 131, 5935–5945.
- 4G. W. Huber, J. W. Shabaker, J. A. Dumesic, Science 2003, 300, 2075–2077.
- 5J. Dulle, S. Nemeth, E. V. Skorb, T. Irrgang, J. Senker, R. Kempe, A. Fery, D. V. Andreeva, Adv. Funct. Mater. 2012, 22, 3128–3135.
- 6N. V. Krstajic, V. D. Jovic, L. G. Krstajic, B. M. Jovic, A. L. Antozzi, G. N. Martelli, Int. J. Hydrogen Energy 2008, 33, 3676–3687.
- 7G. Schiller, R. Henne, P. Mohr, V. Peinecke, Int. J. Hydrogen Energy 1998, 23, 761–765.
- 8S. H. Ahn, S. J. Hwang, S. J. Yoo, I. Choi, H. J. Kim, J. H. Jang, S. W. Nam, T. H. Lim, T. Lim, S. K. Kim, J. J. Kim, J. Mater. Chem. 2012, 22, 15153–15159.
- 9M. R. Gao, Z. Y. Lin, T. T. Zhuang, J. Jiang, Y. F. Xu, Y. R. Zheng, S. H. Yu, J. Mater. Chem. 2012, 22, 13662–13668.
- 10
- 10aB. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Norskov, J. Am. Chem. Soc. 2005, 127, 5308–5309;
- 10bZ. B. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, T. F. Jaramillo, Nano Lett. 2011, 11, 4168–4175;
- 10cJ. D. Benck, Z. B. Chen, L. Y. Kuritzky, A. J. Forman, T. F. Jaramillo, ACS Catal. 2012, 2, 1916–1923;
- 10dY. G. Li, H. L. Wang, L. M. Xie, Y. Y. Liang, G. S. Hong, H. J. Dai, J. Am. Chem. Soc. 2011, 133, 7296–7299;
- 10eT. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100–102;
- 10fH. L. Wang, H. J. Dai, Chem. Soc. Rev. 2013, 42, 3088–3113;
- 10gY. Y. Liang, Y. G. Li, H. L. Wang, H. J. Dai, J. Am. Chem. Soc. 2013, 135, 2013–2036.
- 11M. R. Gao, W. T. Yao, H. B. Yao, S. H. Yu, J. Am. Chem. Soc. 2009, 131, 7486–7487.
- 12M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng, S. H. Yu, J. Am. Chem. Soc. 2012, 134, 2930–2933.
- 13
- 13aM. R. Gao, Q. Gao, J. Jiang, C. H. Cui, W. T. Yao, S. H. Yu, Angew. Chem. 2011, 123, 5007–5010; Angew. Chem. Int. Ed. 2011, 50, 4905–4908;
- 13bM. R. Gao, S. Liu, J. Jiang, C. H. Cui, W. T. Yao, S. H. Yu, J. Mater. Chem. 2010, 20, 9355–9361.
- 14S. Uhlenbrock, C. Scharfschwerdt, M. Neumann, G. Illing, H. J. Freund, J. Phys. Condens. Matter 1992, 4, 7973–7978.
- 15V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Angew. Chem. 2011, 123, 7376–7405;
10.1002/ange.201007987 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 7238–7266.
- 16Q. Lu, M. W. Lattanzi, Y. P. Chen, X. M. Kou, W. F. Li, X. Fan, K. M. Unruh, J. G. Chen, J. Q. Xiao, Angew. Chem. 2011, 123, 6979–6982; Angew. Chem. Int. Ed. 2011, 50, 6847–6850.
- 17B. E. Conway, B. V. Tilak, Electrochim. Acta 2002, 47, 3571–3594.
- 18
- 18aW. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, R. R. Adzic, Energy Environ. Sci. 2013, 6, 943–951;
- 18bB. Losiewicz, A. Budniok, E. Rowinski, E. Lagiewka, A. Lasia, Int. J. Hydrogen Energy 2004, 29, 145–157.