The Winding Pathway to Erythropoietin Along the Chemistry–Biology Frontier: A Success At Last†
Rebecca M. Wilson
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
Search for more papers by this authorDr. Suwei Dong
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
Search for more papers by this authorDr. Ping Wang
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
Search for more papers by this authorCorresponding Author
Prof. Samuel J. Danishefsky
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027 (USA)
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)Search for more papers by this authorRebecca M. Wilson
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
Search for more papers by this authorDr. Suwei Dong
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
Search for more papers by this authorDr. Ping Wang
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
Search for more papers by this authorCorresponding Author
Prof. Samuel J. Danishefsky
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)
Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027 (USA)
Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065 (USA)Search for more papers by this authorDedicated to Stephen Kent and his associates for their discovery of native chemical ligation.
Graphical Abstract
Going native: The total synthesis of a homogeneous erythropoietin, possessing the native amino acid sequence and chitobiose glycans at each of the three wild-type sites of N glycosylation, has been accomplished. Herein is an account of the decade-long research effort en route to this formidable target compound.
Abstract
The total synthesis of a homogeneous erythropoietin (EPO), possessing the native amino acid sequence and chitobiose glycans at each of the three wild-type sites of N glycosylation, has been accomplished in our laboratory. We provide herein an account of our decade-long research effort en route to this formidable target compound. The optimization of the synergy of the two bedrock sciences we now call biology and chemistry was central to the success of the synthesis of EPO.
References
- 1For the first example of NCL in glycopeptide synthesis, see: Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman, C. R. Bertozzi, J. Am. Chem. Soc. 1999, 121, 11684.
- 2For the synthesis of alymphotactin, a glycosylated chemokine with a C-terminal mucin-like domain, see: L. A. Marcaurelle, L. S. Mizoue, J. Wilken, L. Oldham, S. B. H. Kent, T. M. Handel, C. R. Bertozzi, Chem. Eur. J. 2001, 7, 1129.
10.1002/1521-3765(20010302)7:5<1129::AID-CHEM1129>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 3For the synthesis of the 76-amino acid chemokine monocyte chemotactic protein-3, see: N. Yamamoto, Y. Tanabe, R. Okamoto, P. E. Dawson, Y. Kajihara, J. Am. Chem. Soc. 2008, 130, 501.
- 4For the synthesis of ribonuclease C, see:
- 4aC. Piontek, P. Ring, O. Harjes, C. Heinlein, S. Mezzato, N. Lombana, C. Pöhner, M. Püttner, D. V. Silva, A. Martin, F. X. Schmid, C. Unverzagt, Angew. Chem. 2009, 121, 1968;
10.1002/ange.200804734 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 1936;
- 4bC. Piontek, D. V. Silva, C. Heinlein, C. Pöhner, S. Mezzato, P. Ring, A. Martin, F. X. Schmid, C. Unverzagt, Angew. Chem. 2009, 121, 1974;
10.1002/ange.200804735 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 1941.
- 5For the synthesis of antifreeze glycoproteins, see: B. L. Wilkinson, R. S. Stone, C. J. Capicciotti, M. Thaysen-Andersen, J. M. Matthews, N. H. Packer, R. N. Ben, R. J. Payne, Angew. Chem. 2012, 124, 3666;
10.1002/ange.201108682 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 3606.
- 6For the synthesis of interferon-β, see: I. Sakamoto, K. Tezuka, K. Fukae, K. Ishii, K. Taduru, M. Maeda, M. Ouchi, K. Yoshida, Y. Nambu, J. Igarashi, N. Hayashi, T. Tsuji, Y. Kajihara, J. Am. Chem. Soc. 2012, 134, 5428.
- 7For general reviews on EPO, see:
- 7aS. Elliott, M. A. Foote, G. Molineux, Erythropoietins, Erythropoietic Factors, and Erythropoiesis, 2nd ed., Birkhäuser, Boston, 2009;
10.1007/978-3-7643-8698-6 Google Scholar
- 7bA. J. Sytkowski, Erythropoietin, Wiley-VCH, Weinheim, 2004;
10.1002/3527602380 Google Scholar
- 7cJ. Szenajch, G. Wcislo, J.-Y. Jeong, C. Szczylik, L. Feldman, Biochim. Biophys. Acta Rev. Cancer 2010, 1806, 82.
- 8
- 8aM. Higuchi, M. Oh-eda, H. Kuboniwa, K. Tomonoh, Y. Shimonaka, J. Biol. Chem. 1992, 267, 7703;
- 8bJ. C. Egrie, J. R. Grant, D. K. Gillies, K. H. Aoki, T. W. Strickland, Glycoconjugate J. 1993, 10, 263.
- 9
- 9aR. Kornfeld, S. Kornfeld, Annu. Rev. Biochem. 1985, 54, 631;
- 9bJ. Roth, Chem. Rev. 2002, 102, 285;
- 9cP. M. Rudd, R. A. Dwek, Crit. Rev. Biochem. Mol. Biol. 1997, 32, 1.
- 10D. Macmillan, R. M. Bill, K. A. Sage, D. Fern, S. L. Flitsch, Chem. Biol. 2001, 8, 133.
- 11G. G. Kochendoerfer, S.-Y. Chen, F. Mao, S. Cressman, S. Traviglia, H. Shao, C. L. Hunter, D. W. Low, E. N. Cagle, M. Carnevali, V. Gueriguian, P. J. Keogh, H. Porter, S. M. Stratton, M. C. Wiedeke, J. Wilken, J. Tang, J. J. Levy, L. P. Miranda, M. M. Crnogorac, S. Kalbag, P. Botti, J. Schindler-Horvat, L. Savatski, J. W. Adamson, A. Kung, S. B. H. Kent, J. A. Bradburne, Science 2003, 299, 884.
- 12S. Liu, B. L. Pentelute, S. B. H. Kent, Angew. Chem. 2012, 124, 1017; Angew. Chem. Int. Ed. 2012, 51, 993.
- 13J. P. Richardson, D. Macmillan, Org. Biomol. Chem. 2008, 6, 3977.
- 14K. Hirano, D. Macmillan, K. Tezuka, T. Tsuji, Y. Kajihara, Angew. Chem. 2009, 121, 9721;
10.1002/ange.200904376 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 9557.
- 15M. Murakami, R. Okamoto, M. Izumi, Y. Kajihara, Angew. Chem. 2012, 124, 3627; Angew. Chem. Int. Ed. 2012, 51, 3567.
- 16P. Wang, S. Dong, J. A. Brailsford, K. Iyer, S. D. Townsend, Q. Zhang, R. C. Hendrickson, J. H. Shieh, M. A. S. Moore, S. J. Danishefsky, Angew. Chem. 2012, 124, 11744; Angew. Chem. Int. Ed. 2012, 51, 11576.
- 17C. Kan, S. J. Danishefsky, Tetrahedron 2009, 65, 9047.
- 18
- 18aS. Shang, Z. Tan, S. J. Danishefsky, Proc. Natl. Acad. Sci. USA 2011, 108, 4297;
- 18bS. Dong, S. Shang, J. Li, Z. Tan, T. Dean, A. Maeda, T. J. Gardella, S. J. Danishefsky, J. Am. Chem. Soc. 2012, 134, 15122.
- 19J. Li, S. Dong, S. D. Townsend, T. Dean, T. J. Gardella, S. J. Danishefsky, Angew. Chem. 2012, 124, 12429; Angew. Chem. Int. Ed. 2012, 51, 12263.
- 20
- 20aP. Nagorny, N. Sane, B. Fasching, B. Aussedat, S. J. Danishefsky, Angew. Chem. 2012, 124, 999;
10.1002/ange.201107482 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 975;
- 20bB. Aussedat, B. Fasching, E. Johnston, N. Sane, P. Nagorny, S. J. Danishefsky, J. Am. Chem. Soc. 2012, 134, 3532.
- 21S. J. Danishefsky, M. T. Bilodeau, Angew. Chem. 1996, 108, 1482;
10.1002/ange.19961081304 Google ScholarAngew. Chem. Int. Ed. Engl. 1996, 35, 1380.
- 22J. S. Miller, V. Y. Dudkin, G. J. Lyon, T. W. Muir, S. J. Danishefsky, Angew. Chem. 2003, 115, 447;
10.1002/ange.200390099 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 431.
- 23L. M. Likhosherstov, O. S. Novikova, V. A. Derevitskaja, N. K. Kochetkov, Carbohydr. Res. 1986, 146, C 1.
- 24
- 24aS. T. Anisfeld, P. T. Lansbury, J. Org. Chem. 1990, 55, 5560;
- 24bS. T. Cohen-Anisfeld, P. T. Lansbury, J. Am. Chem. Soc. 1993, 115, 10531.
- 25P. E. Dawson, T. W. Muir, I. Clark-Lewis, S. B. H. Kent, Science 1994, 266, 776.
- 26J. D. Warren, J. S. Miller, S. J. Keding, S. J. Danishefsky, J. Am. Chem. Soc. 2004, 126, 6576.
- 27J. Chen, J. D. Warren, B. Wu, G. Chen, Q. Wan, S. J. Danishefsky, Tetrahedron Lett. 2006, 47, 1969.
- 28G. Chen, J. D. Warren, J. Chen, B. Wu, Q. Wan, S. J. Danishefsky, J. Am. Chem. Soc. 2006, 128, 7460.
- 29B. Wu, Z. Hua, J. D. Warren, K. Ranganathan, Q. Wan, G. Chen, Z. Tan, J. Chen, A. Endo, S. J. Danishefsky, Tetrahedron Lett. 2006, 47, 5577.
- 30B. Wu, Z. Tan, G. Chen, J. Chen, Z. Hua, Q. Wan, K. Ranganathan, S. J. Danishefsky, Tetrahedron Lett. 2006, 47, 8009.
- 31
- 31aL. E. Canne, S. J. Bark, S. B. H. Kent, J. Am. Chem. Soc. 1996, 118, 5891;
- 31bD. W. Low, M. G. Hill, M. R. Carrasco, S. B. H. Kent, P. Botti, Proc. Natl. Acad. Sci. USA 2001, 98, 6554.
- 32J. Offer, C. N. C. Boddy, P. E. Dawson, J. Am. Chem. Soc. 2002, 124, 4642.
- 33B. Wu, J. Chen, J. D. Warren, G. Chen, Z. Hua, S. J. Danishefsky, Angew. Chem. 2006, 118, 4222; Angew. Chem. Int. Ed. 2006, 45, 4116.
- 34J. Chen, G. Chen, B. Wu, Q. Wan, Z. Tan, Z. Hua, S. J. Danishefsky, Tetrahedron Lett. 2006, 47, 8013.
- 35For a recent review, see: L. Raibaut, N. Ollivier, O. Melnyk, Chem. Soc. Rev. 2012, 41, 7001.
- 36D. Bang, S. B. Kent, Angew. Chem. 2004, 116, 2588;
10.1002/ange.200353540 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 2534.
- 37B. Wu, J. D. Warren, J. Chen, G. Chen, Z. Hua, S. J. Danishefsky, Tetrahedron Lett. 2006, 47, 5219.
- 38
- 38aJ. Blake, Int. J. Peptide Protein Res. 1981, 17, 273–274;
- 38bS. Aimoto, N. Mizoguchi, H. Hojo, S. Yoshimura, Bull. Chem. Soc. Jpn. 1989, 62, 524–531;
- 38cS. Aimoto, Biopolymers 1999, 51, 247–265.
10.1002/(SICI)1097-0282(1999)51:4<247::AID-BIP2>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 39G. Chen, Q. Wan, Z. Tan, C. Kan, Z. Hua, K. Ranganathan, S. J. Danishefsky, Angew. Chem. 2007, 119, 7527; Angew. Chem. Int. Ed. 2007, 46, 7383.
- 40Q. Wan, S. J. Danishefsky, Angew. Chem. 2007, 119, 9408; Angew. Chem. Int. Ed. 2007, 46, 9248.
- 41L. Z. Yan, P. E. Dawson, J. Am. Chem. Soc. 2001, 123, 526.
- 42C. Haase, H. Rohde, O. Seitz, Angew. Chem. 2008, 120, 6912;
10.1002/ange.200801590 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 6807.
- 43K. S. Ajish Kumar, M. Haj-Yahya, D. Olschewski, H. A. Lashuel, A. Brik, Angew. Chem. 2009, 121, 8234;
10.1002/ange.200902936 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 8090.
- 44S. N. Bavikar, L. Spasser, M. Haj-Yahya, S. V. Karthikeyan, T. Moyal, K. S. A. Kumar, A. Brik, Angew. Chem. 2012, 124, 782;
10.1002/ange.201106430 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 758.
- 45B. Fierz, S. Kilic, A. R. Hieb, K. Luger, T. W. Muir, J. Am. Chem. Soc. 2012, 134, 19548.
- 46J. Chen, Q. Wan, Y. Yuan, J. L. Zhu, S. J. Danishefsky, Angew. Chem. 2008, 120, 8649; Angew. Chem. Int. Ed. 2008, 47, 8521.
- 47J. Chen, P. Wang, J. Zhu, Q. Wan, S. J. Danishefsky, Tetrahedron 2009, 66, 2277.
- 48Z. Tan, S. Shang, S. J. Danishefsky, Angew. Chem. 2010, 122, 9690; Angew. Chem. Int. Ed. 2010, 49, 9500.
- 49S. Shang, Z. Tan, S. Dong, S. J. Danishefsky, J. Am. Chem. Soc. 2011, 133, 10784.
- 50D. Crich, A. Banerjee, J. Am. Chem. Soc. 2007, 129, 10064.
- 51R. Yang, K. K. Pasunooti, F. Li, X.-W. Liu, C.-F. Liu, J. Am. Chem. Soc. 2009, 131, 13592.
- 52Z. Harpaz, P. Siman, K. S. A. Kumar, A. Brik, ChemBioChem 2010, 11, 1232.
- 53P. Siman, S. V. Karthikeyan, A. Brik, Org. Lett. 2012, 14, 1520.
- 54L. R. Malins, K. M. Cergol, R. J. Payne, ChemBioChem 2013, 14, 559.
- 55Z. Tan, S. Shang, T. Halkina, Y. Yuan, S. J. Danishefsky, J. Am. Chem. Soc. 2009, 131, 5424.
- 56Y. Yuan, J. Chen, Q. Wan, Z. Tan, G. Chen, C. Kan, S. J. Danishefsky, J. Am. Chem. Soc. 2009, 131, 5432.
- 57C. Kan, J. D. Trzupek, B. Wu, Q. Wan, G. Chen, Z. Tan, Y. Yuan, S. J. Danishefsky, J. Am. Chem. Soc. 2009, 131, 5438.
- 58S. Dong, S. Shang, Z. Tan, S. J. Danishefsky, Isr. J. Chem. 2011, 51, 968.
- 59
- 59aM. Bodanszky, J. C. Tolle, S. S. Deshmane, A. Bodanszky, Int. J. Pept. Protein Res. 1978, 12, 57;
- 59bM. Bodanszky, G. F. Sigler, A. Bodanszky, J. Am. Chem. Soc. 1973, 95, 2352.
- 60F. García-Martín, P. White, R. Steinauer, S. Côté, J. Tulla-Puche, F. Albericio, Biopolymers 2006, 84, 566.
- 61P. Wang, B. Aussedat, Y. Vohra, S. J. Danishefsky, Angew. Chem. 2012, 124, 11739; Angew. Chem. Int. Ed. 2012, 51, 11571.
- 62V. Ullmann, M. Radisch, I. Boos, J. Freund, C. Pohner, S. Schwarzinger, C. Unverzagt, Angew. Chem. 2012, 124, 11734;
10.1002/ange.201204272 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 11566.
- 63D. Bang, N. Chopra, S. B. Kent, J. Am. Chem. Soc. 2004, 126, 1377.
- 64
- 64aD. Bang, B. Pentelute, S. B. H. Kent, Angew. Chem. 2006, 118, 4089;
10.1002/ange.200600702 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 3985; For mechanistic studies, see:
- 64bE. C. B. Johnson, S. B. H. Kent, J. Am. Chem. Soc. 2006, 128, 6640.
- 65J. A. Brailsford, S. J. Danishefsky, Proc. Natl. Acad. Sci. USA 2012, 109, 7196.
- 66Of course, while all this had been in progress, there was a corresponding infatuation with a small-molecule family known as the epothilones. Confusion as to these two ventures was minimized by use of descriptors (big EPO and little Epo). This led, eventually, to the non-natural small molecules fludelone and isofludelone. The latter is currently in human clinical trials in oncology settings. See:
- 66aA. Rivkin, T.-C. Chou, S. J. Danishefsky, Angew. Chem. 2005, 117, 2898;
10.1002/ange.200461751 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 2838;
- 66bT.-C. Chou, X. Zhang, Z.-Y. Zhong, Y. Li, L. Feng, S. Eng, D. R. Myles, R. Johnson, N. Wu, Y. I. Yin, R. M. Wilson, S. J. Danishefsky, Proc. Natl. Acad. Sci. USA 2008, 105, 13157.