Asymmetric Counteranion-Directed Catalysis: Concept, Definition, and Applications
Manuel Mahlau
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Benjamin List
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorManuel Mahlau
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Benjamin List
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorGraphical Abstract
Opposites attract: This simple realization is the basis for asymmetric counteranion-directed catalysis (ACDC). All reactions proceeding via cationic intermediates are accompanied by a counteranion. Inducing high enantioselectivities in these reactions merely by ion pairing with an enantiomerically pure counteranion has been achieved for the first time during recent years.
Abstract
Recently, the use of enantiomerically pure counteranions for the induction of asymmetry in reactions proceeding through cationic intermediates has emerged as an exciting new concept, which has been termed asymmetric counteranion-directed catalysis (ACDC). Despite its success, the concept has not been fully defined and systematically discussed to date. This Review closes this gap by providing a clear definition of ACDC and by examining both clear cases as well as more ambiguous examples to illustrate the differences and overlaps with other catalysis concepts.
References
- 1For a recent review on asymmetric phase-transfer catalysis, see T. Hashimoto, K. Maruoka, Chem. Rev. 2007, 107, 5656–5682.
- 2For earlier reviews presenting examples of ACDC, but not defining the concept or discussing the classification of reactions, see
- 2aJ. Lacour, D. Linder, Science 2007, 317, 462–463;
- 2bL. Ratjen, S. Müller, B. List, Nachr. Chem. 2010, 58, 640–646;
- 2cM. Mahlau, B. List, Isr. J. Chem. 2012, 52, 630–638; after the submission of this manuscript, a related review appeared:
- 2dR. J. Phipps, G. L. Hamilton, F. D. Toste, Nat. Chem. 2012, 4, 603–614.
- 3In contrast to their widespread acceptance, the terms “counteranion” and “countercation” to indicate the charge of a counterion has recently been questioned by Lacour and Moraleda (see Ref. [4b]). Despite some arguable ambiguity, we use these terms here anyway, as they are well-suited for the discussion of the concepts treated in this Review and also commonly used in the literature.
- 4For reviews on the application of chiral counteranions in synthesis and catalysis, see
- 4aJ. Lacour, V. Hebbe-Viton, Chem. Soc. Rev. 2003, 32, 373–382;
- 4bJ. Lacour, D. Moraleda, Chem. Commun. 2009, 7073–7089. For the discussion of these early attempts in the context of ACDC, see the reviews cited in Ref. [2].
- 5For a review, see H. Ishibashi, K. Ishihara, H. Yamamoto, Chem. Rec. 2002, 2, 177–188.
- 6Chiral phosphoric acid diesters have been studied extensively as chiral ligands in Rh-catalyzed transformations; for selected examples, see
- 6aM. C. Pirrung, J. Zhang, Tetrahedron Lett. 1992, 33, 5987–5990;
- 6bN. McCarthy, M. A. McKervey, T. Ye, M. McCann, E. Murphy, M. P. Doyle, Tetrahedron Lett. 1992, 33, 5983–5986;
- 6cP. Müller, C. Baud, Y. Jacquier, M. Moran, I. Nageli, J. Phys. Org. Chem. 1996, 9, 341–347;
- 6dP. Müller, C. Baud, Y. Jacquier, Tetrahedron 1996, 52, 1543–1548;
- 6eP. Müller, C. Baud, I. Naegeli, J. Phys. Org. Chem. 1998, 11, 597–601;
10.1002/(SICI)1099-1395(199808/09)11:8/9<597::AID-POC45>3.0.CO;2-M CAS Web of Science® Google Scholar
- 6fD. M. Hodgson, P. A. Stupple, C. Johnstone, Chem. Commun. 1999, 2185–2186;
- 6gD. M. Hodgson, P. A. Stupple, F. Y. T. M. Pierard, A. H. Labande, C. Johnstone, Chem. Eur. J. 2001, 7, 4465–4476;
10.1002/1521-3765(20011015)7:20<4465::AID-CHEM4465>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 6hD. M. Hodgson, M. Petroliagi, Tetrahedron: Asymmetry 2001, 12, 877–881;
- 6iD. M. Hodgson, R. Glen, A. Redgrave, Tetrahedron Lett. 2002, 43, 3927–3930;
- 6jD. M. Hodgson, A. H. Labande, F. Y. T. M. Pierard, M. A. Expósito Castro, J. Org. Chem. 2003, 68, 6153–6159;
- 6kD. M. Hodgson, R. Glen, G. H. Grant, A. J. Redgrave, J. Org. Chem. 2003, 68, 581–586;
- 6lD. M. Hodgson, A. H. Labande, F. Y. T. M. Pierard, Synlett 2003, 59–62;
- 6mD. M. Hodgson, A. H. Lablande, R. Glen, A. J. Redgrave, Tetrahedron: Asymmetry 2003, 14, 921–924;
- 6nD. M. Hodgson, D. A. Selden, A. G. Dossetter, Tetrahedron: Asymmetry 2003, 14, 3841–3849;
- 6oH. M. L. Davies, A. M. Walji, Org. Lett. 2005, 7, 2941–2944.
- 7Reactions where chiral phosphoric acid diesters served as ligands to other transition metals have also been published; for examples, see
- 7aH. Alper, N. Hamel, J. Am. Chem. Soc. 1990, 112, 2803–2804;
- 7bM.-C. Lacasse, C. Poulard, A. B. Charette, J. Am. Chem. Soc. 2005, 127, 12440–12441.
- 8The use of chiral phosphoric acid diesters as ligands on Lewis acidic metal catalysts has also been reported; for a review, see
- 8aJ. Inanaga, H. Furuno, T. Hayano, Chem. Rev. 2002, 102, 2211–2225; for selected examples, see
- 8bT. Hanamoto, H. Furuno, Y. Sugimoto, J. Inanaga, Synlett 1997, 79–80;
- 8cH. Furuno, T. Hanamoto, Y. Sugimoto, J. Inanaga, Org. Lett. 2000, 2, 49–52;
- 8dX. L. Jin, H. Sugihara, K. Daikai, H. Tateishi, Y. Z. Jin, H. Furuno, J. Inanaga, Tetrahedron 2002, 58, 8321–8329;
- 8eH. Sugihara, K. Daikai, X. L. Jin, H. Furuno, J. Inanaga, Tetrahedron Lett. 2002, 43, 2735–2739;
- 8fH. Furuno, T. Hayano, T. Kambara, Y. Sugimoto, T. Hanamoto, Y. Tanaka, Y. Z. Jin, T. Kagawa, J. Inanaga, Tetrahedron 2003, 59, 10509–10523;
- 8gH. Furuno, T. Kambara, Y. Tanaka, T. Hanamoto, T. Kagawa, J. Inanaga, Tetrahedron Lett. 2003, 44, 6129–6132;
- 8hS. Suzuki, H. Furuno, Y. Yokoyama, J. Inanaga, Tetrahedron: Asymmetry 2006, 17, 504–507;
- 8iT. Yue, M.-X. Wang, D.-X. Wang, G. Masson, J. Zhu, J. Org. Chem. 2009, 74, 8396–8399;
- 8jY.-Y. Huang, A. Chakrabarti, N. Morita, U. Schneider, S. Kobayashi, Angew. Chem. 2011, 123, 11317–11320; Angew. Chem. Int. Ed. 2011, 50, 11121–11124.
- 9
- 9aT. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem. 2004, 116, 1592–1594;
10.1002/ange.200353240 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 1566–1568;
- 9bD. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356–5357.
- 10M. Hatano, K. Moriyama, T. Maki, K. Ishihara, Angew. Chem. 2010, 122, 3911–3914;
10.1002/ange.201000824 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 3823–3826.
- 11For reviews on chiral Brønsted acid catalysis, see
- 11aD. Kampen, C. M. Reisinger, B. List, Top. Curr. Chem. 2009, 291, 395–456;
- 11bT. Akiyama, Chem. Rev. 2007, 107, 5744–5758;
- 11cT. Akiyama, J. Itoh, K. Fuchibe, Adv. Synth. Catal. 2006, 348, 999–1010;
- 11dM. Terada, Chem. Commun. 2008, 4097–4112;
- 11eS. J. Connon, Angew. Chem. 2006, 118, 4013–4016;
10.1002/ange.200600529 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 3909–3912.
- 12
- 12aS. Hoffmann, A. M. Seayad, B. List, Angew. Chem. 2005, 117, 7590–7593;
10.1002/ange.200503062 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 7424–7427;
- 12bJ. Seayad, A. M. Seayad, B. List, J. Am. Chem. Soc. 2006, 128, 1086–1087;
- 12cS. Hoffmann, M. Nicoletti, B. List, J. Am. Chem. Soc. 2006, 128, 13074–13075;
- 12dS. Mayer, B. List, Angew. Chem. 2006, 118, 4299–4301; Angew. Chem. Int. Ed. 2006, 45, 4193–4195;
- 12eJ. Zhou, B. List, J. Am. Chem. Soc. 2007, 129, 7498–7499; for a related patent from the Akiyama group, see
- 12fT. Akiyama, U.S. Patent 0276329 A1, Dec 7, 2006.
- 13For a review on the application of TRIP in asymmetric organocatalysis, see G. Adair, S. Mukherjee, B. List, Aldrichimica Acta 2008, 41, 31–39.
- 14For reviews that use the term asymmetric counteranion-directed catalysis to describe this concept, see
- 14aS.-L. You, Chem. Asian J. 2007, 2, 820–827;
- 14bR. M. de Figueiredo, M. Christmann, Eur. J. Org. Chem. 2007, 2575–2600;
- 14cS. J. Connon, Org. Biomol. Chem. 2007, 5, 3407–3417;
- 14dP. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem. 2008, 120, 6232–6265;
10.1002/ange.200705523 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 6138–6171;
- 14eM. Bandini, A. Eichholzer, Angew. Chem. 2009, 121, 9786–9824;
10.1002/ange.200901843 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 9608–9644;
- 14fS. Antoniotti, V. Dalla, E. Duñach, Angew. Chem. 2010, 122, 8032–8060;
10.1002/ange.200906407 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 7860–7888;
- 14gG. Bartoli, G. Bencivenni, R. Dalpozzo, Chem. Soc. Rev. 2010, 39, 4449–4465;
- 14hJ.-F. Brière, S. Oudeyer, V. Dalla, V. Levacher, Chem. Soc. Rev. 2012, 41, 1696–1707.
- 15E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books, Sausalitos, 2005, pp. 164–180.
- 16Y. Marcus, G. Hefter, Chem. Rev. 2006, 106, 4585–4621.
- 17For the development of the non-asymmetric variant of this reactions and preliminary results on the asymmetric version, see
- 17aJ. W. Yang, M. T. F. Hechavarria, B. List, Angew. Chem. 2004, 116, 6829–6832; Angew. Chem. Int. Ed. 2004, 43, 6660–6662; for the first organocatalytic asymmetric transfer hydrogenations, see
- 17bJ. W. Yang, M. T. F. Hechavarria, N. Vignola, B. List, Angew. Chem. 2005, 117, 110–112; Angew. Chem. Int. Ed. 2005, 44, 108–110 (anion effect unpublished);
- 17cS. G. Ouellet, J. B. Tuttle, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 32–33.
- 18There may, however, be less obvious CH-bound hydrogen bonds: H. Mayr, A. R. Ofial, E.-U. Würthwein, N. C. Aust, J. Am. Chem. Soc. 1997, 119, 12727–12733.
- 19G. L. Hamilton, T. Kanai, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 14984–14986.
- 20For further examples of reversed-polarity phase-transfer catalysis, see
- 20aV. Rauniyar, A. D. Lackner, G. L. Hamilton, F. D. Toste, Science 2011, 334, 1681–1684;
- 20bR. J. Phipps, K. Hiramatsu, F. D. Toste, J. Am. Chem. Soc. 2012, 134, 8376–8379;
- 20cY.-M. Wang, J. Wu, C. Hoong, V. Rauniyar, F. D. Toste, J. Am. Chem. Soc. 2012, 134, 12928–12931.
- 21For leading examples, see
- 21aM. Terada, H. Tanaka, K. Sorimachi, J. Am. Chem. Soc. 2009, 131, 3430–3431;
- 21bK. Mori, K. Ehara, K. Kurihara, T. Akiyama, J. Am. Chem. Soc. 2011, 133, 6166–6169; for further examples see the reviews cited in Ref. [16].
- 22I. D. Gridnev, M. Kouchi, K. Sorimachi, M. Terada, Tettrahedron Lett. 2007, 48, 497–500.
- 23M. Yamanaka, J. Itoh, K. Fuchibe, T. Akiyama, J. Am. Chem. Soc. 2007, 129, 6756–6764.
- 24M. Fleischmann, D. Drettwan, E. Sugiono, M. Rueping, R. M. Gschwind, Angew. Chem. 2011, 123, 6488–6493;
10.1002/ange.201101385 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 6364–6369.
- 25J. Seayad, B. List, Org. Biomol. Chem. 2005, 3, 719–724.
- 26
- 26aM. Marigo, J. Franzén, T. B. Poulsen, W. Zhuang, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 6964–6965;
- 26bW. Zhuang, M. Marigo, K. A. Jørgensen, Org. Biomol. Chem. 2005, 3, 3883–3885.
- 27X. Wang, B. List, Angew. Chem. 2008, 120, 1135–1138; Angew. Chem. Int. Ed. 2008, 47, 1119–1122.
- 28N. J. A. Martin, B. List, J. Am. Chem. Soc. 2006, 128, 13368–13369.
- 29For the epoxidation of cyclohexenones, see
- 29aX. Wang, C. M. Reisinger, B. List, J. Am. Chem. Soc. 2008, 130, 6070–6071; for the epoxidation of α-branched aldehydes, see
- 29bO. Lifchits, C. M. Reisinger, B. List, J. Am. Chem. Soc. 2010, 132, 10227–10229.
- 30For further examples of combined chiral amine and ACDC catalysis, see
- 30aS.-P. Luo, Z.-B. Li, L.-P. Wang, Y. Guo, A.-B. Xia, D.-Q. Xu, Org. Biomol. Chem. 2009, 7, 4539–4546;
- 30bJ.-W. Xie, X. Huang, L.-P. Fan, D.-C. Xu, X.-X. Li, H. Su, Y.-H. Wang, Adv. Synth. Catal. 2009, 351, 3077–3082;
- 30cG. Bergonzini, S. Vera, P. Melchiore, Angew. Chem. 2010, 122, 9879–9882;
10.1002/ange.201004761 Google ScholarAngew Chem. Int. Ed. 2010, 49, 9685–9688;
- 30dC. Liu, Q. Zhu, K.-W. Huang, Y. Lu, Org. Lett. 2011, 13, 2638–2641;
- 30eL. Liu, D. Wu, X. Li, S. Wang, H. Li, J. Li, W. Wang, Chem. Commun. 2012, 48, 1692–1694;
- 30fR. Kapoor, R. Chawla, S. Singh, L. D. S. Yadav, Synlett 2012, 23, 1321–1326.
- 31
- 31aE. Fan, S. A. Vanarman, S. Kincaid, A. D. Hamilton, J. Am. Chem. Soc. 1993, 115, 369–370;
- 31bJ. S. Albert, A. D. Hamilton, Tetrahedron Lett. 1993, 34, 7363–7366;
- 31cP. J. Smith, M. V. Reddington, C. S. Wilcox, Tetrahedron Lett. 1992, 33, 6085–6088; for a review, see
- 31dZ. Zhang, P. R. Schreiner, Chem. Soc. Rev. 2009, 38, 1187–1198.
- 32M. S. Taylor, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 10558–10559.
- 33S. C. Pan, J. Zhou, B. List, Angew. Chem. 2007, 119, 618–620; Angew. Chem. Int. Ed. 2007, 46, 612–614.
- 34
- 34aI. T. Raheem, P. S. Thiara, E. A. Peterson, E. N. Jacobsen, J. Am. Chem. Soc. 2007, 129, 13404–13405;
- 34bS. E. Reisman, A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 7198–7199.
- 35G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science 2007, 317, 496–499.
- 36S. Mukherjee, B. List, J. Am. Chem. Soc. 2007, 129, 11336–11337.
- 37For further examples of ACDC in transition-metal catalysis, not explicitly discussed here, see
- 37aB. Zhao, H. Du, Y. Shi, J. Org. Chem. 2009, 74, 8392–8395;
- 37bD. Chen, B. Sundaraju, R. Krause, J. Klankermayer, P. H. Dixneuf, W. Leitner, ChemCatChem 2010, 2, 55–57;
- 37cG. Jiang, B. List, Chem. Commun. 2011, 47, 10022–10024.
- 38
- 38aA. S. K. Hashmi, Angew. Chem. 2010, 122, 5360–5369;
10.1002/ange.200907078 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 5232–5241;
- 38bS. Sengupta, X. Shi, ChemCatChem 2010, 2, 609–619.
- 39For the synthesis of pyrazolidines, isoxazolidines, and tetrahydrooxazines, see R. L. LaLonde, Z. J. Wang, M. Mba, A. D. Lackner, F. D. Toste, Angew. Chem. 2010, 122, 608–611;
10.1002/ange.200905000 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 598–601.
- 40Mikami and co-workers have studied the dynamic kinetic resolution of AuI complexes with chiral anions and their use in enantioselective catalysis; for examples, see
- 40aK. Aikawa, M. Kojima, K. Mikami, Angew. Chem. 2009, 121, 6189–6193;
10.1002/ange.200902084 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 6073–6077;
- 40bK. Aikawa, M. Kojima, K. Mikami, Adv. Synth. Catal. 2010, 352, 3131–3135; for a related strategy using enantiopure borate anions with racemic binol, see
- 40cD. Chen, B. Sundararaju, R. Krause, J. Klankermayer, P. H. Dixneuf, W. Leitner, ChemCatChem 2010, 2, 55–57.
- 41M. Barbazanges, M. Augé, J. Moussa, H. Amouri, C. Aubert, C. Desmartes, L. Fensterbank, V. Gandon, M. Malacria, C. Ollivier, Chem. Eur. J. 2011, 17, 13789–13794.
- 42
- 42aC. Li, C. Wang, B. Villa-Marcos, J. Xiao, J. Am. Chem. Soc. 2008, 130, 14450–14451;
- 42bC. Li, B. Villa-Marcos, J. Xiao, J. Am. Chem. Soc. 2009, 131, 6967–6969; for related reductions combining transition-metal catalysis with chiral Brønsted acids, see
- 42cZ. Yu, W. Jin, Q. Jiang, Angew. Chem. 2012, 124, 6164–6177; Angew. Chem. Int. Ed. 2012, 51, 6060–6072, and references cited therein.
- 43G. Jiang, B. List, Angew. Chem. 2011, 123, 9643–9646; Angew. Chem. Int. Ed. 2011, 50, 9471–9474.
- 44For selected reviews, see
- 44aB. M. Trost, D. L. V. Vranken, Chem. Rev. 1996, 96, 395–422;
- 44bB. M. Trost, Chem. Pharm. Bull. 2002, 50, 1–14;
- 44cB. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921–2943;
- 44dB. M. Trost, M. R. Machacek, A. Aponick, Acc. Chem. Res. 2006, 39, 747–760;
- 44eJ. T. Mohr, B. M. Stoltz, Chem. Asian J. 2007, 2, 1476–1491;
- 44fZ. Lu, S. Ma, Angew. Chem. 2008, 120, 264–303; Angew. Chem. Int. Ed. 2008, 47, 258–297.
- 45S. Liao, B. List, Angew. Chem. 2010, 122, 638–641; Angew. Chem. Int. Ed. 2010, 49, 628–631.
- 46
- 46aW. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem. Soc. 1990, 112, 2801–2803;
- 46bR. Irie, K. Noda, Y. Ito, N. Matsumoto, T. Katsuki, Tetrahedron Lett. 1990, 31, 7345–7348.
- 47The use of neutral ligands as additives is common in typical Jacobsen–Katsuki epoxidations; for example, see
- 47aR. Irie, Y. Ito, T. Katsuki, Synlett 1991, 265–266;
- 47bL. Deng, E. N. Jacobsen, J. Org. Chem. 1992, 57, 4320–4323;
- 47cP. Pietikäinen, Tetrahedron 1998, 54, 4319–4326;
- 47dJ. P. Collman, L. Zeng, J. I. Brauman, Inorg. Chem. 2004, 43, 2672–2679; for a review discussing the effect of neutral ligands as additives, see E. M. McGarrigle, D. G. Gilheany, Chem. Rev. 2005, 105, 1563–1602.
- 48W. Adam, K. J. Roschmann, C. R. Saha-Möller, Eur. J. Org. Chem. 2000, 3519–3521.
- 49S. Liao, B. List, Adv. Synth. Catal. 2012, 354, 2363–2367.
- 50G. Jiang, R. Halder, Y. Fang, B. List, Angew. Chem. 2011, 123, 9926–9929; Angew. Chem. Int. Ed. 2011, 50, 9752–9755.
- 51
- 51aL. E. Overman, Angew. Chem. 1984, 96, 565–573; Angew. Chem. Int. Ed. Engl. 1984, 23, 579–586;
- 51bH. Nomura, C. J. Richards, Chem. Eur. J. 2007, 13, 10216–10224.
- 52V. Rauniyar, Z. J. Wang, H. E. Burks, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 8486–8489.
- 53K. Ohmatsu, M. Ito, T. Kunieda, T. Ooi, Nat. Chem. 2012, 4, 473–477.
- 54For reviews including combined and/or sequential transition-metal and asymmetric counteranion-directed catalysis, see
- 54aZ. Shao, H. Zhang, Chem. Soc. Rev. 2009, 38, 2745–2755;
- 54bM. Rueping, R. M. Koenigs, I. Atodiresei, Chem. Eur. J. 2010, 16, 9350–9365;
- 54cC. Zhong, X. Shi, Eur. J. Org. Chem. 2010, 2999–3025.
- 55V. Komanduri, M. J. Krische, J. Am. Chem. Soc. 2006, 128, 16448–16449.
- 56M. Rueping, A. P. Antonchick, C. Brinkmann, Angew. Chem. 2007, 119, 7027–7030;
10.1002/ange.200702439 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 6903–6906.
- 57For selected examples, see
- 57aW.-H. Hu, X.-F. Xu, J. Zhou, W.-J. Liu, H.-X. Huang, J. Hu, L.-P. Yang, L.-Z. Gong, J. Am. Chem. Soc. 2008, 130, 7782–7783;
- 57bX.-F. Xu, J. Zhou, L.-P. Yang, W.-H. Hu, Chem. Commun. 2008, 6564–6566;
- 57cY. Lu, T. C. Johnstone, B. A. Arndtsen, J. Am. Chem. Soc. 2009, 131, 11284–11285;
- 57dY. Qian, X. Xu, L. Jiang, D. Prajapati, W. Hu, J. Org. Chem. 2010, 75, 7483–7486;
- 57eR. Yazaki, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2010, 132, 10275–10277;
- 57fL. Yang, Q. Zhu, S. Guo, B. Qian, C. Xia, H. Huang, Chem. Eur. J. 2010, 16, 1638–1645;
- 57gX. Xu, Y. Qian, L. Yang, W. Hu, Chem. Commun. 2011, 47, 797–799;
- 57hJ. Jiang, H.-D. Xu, J.-B. Xi, B.-Y. Ren, F.-P. Lv, X. Guo, L. Q. Jiang, Z.-Y. Zhang, W.-H. Hu, J. Am. Chem. Soc. 2011, 133, 8428–8431;
- 57iB. Xu, S.-F. Zhu, X.-L. Xie, J.-J. Shen, Q.-L. Zhou, Angew. Chem. 2011, 123, 11685–11688; Angew. Chem. Int. Ed. 2011, 50, 11483–11486;
- 57jS. Zhou, S. Fleischer, K. Junge, M. Beller, Angew. Chem. 2011, 123, 5226–5230; Angew. Chem. Int. Ed. 2011, 50, 5120–5124.
- 58Z.-Y. Han, H. Xiao, X.-H. Chen, L.-Z. Gong, J. Am. Chem. Soc. 2009, 131, 9182–9183.
- 59X.-Y. Liu, C.-M. Che, Org. Lett. 2009, 11, 4204–4207.
- 60For selected examples, see
- 60aQ. Cai, Z.-A. Zhao, S.-L. You, Angew. Chem. 2009, 121, 7564–7567; Angew. Chem. Int. Ed. 2009, 48, 7428–7431;
- 60bC. Wang, Z.-Y. Han, H.-W. Luo, L.-Z. Gong, Org. Lett. 2010, 12, 2266–2269;
- 60cM. E. Muratore, C. A. Holloway, A. W. Pilling, R. I. Storer, G. Trevitt, D. J. Dixon, J. Am. Chem. Soc. 2009, 131, 10796–10797;
- 60dQ.-A. Chen, D.-S. Wang, Y.-G. Zhou, Y. Duan, H.-J. Fan, Y. Yang, Z. Zhang, J. Am. Chem. Soc. 2011, 133, 6126–6129;
- 60eC. C. J. Loh, J. Badorrek, G. Raabe, D. Enders, Chem. Eur. J. 2011, 17, 13409–13414;
- 60fM. Terada, Y. Toda, Angew. Chem. 2012, 124, 2135–2139; Angew. Chem. Int. Ed. 2012, 51, 2093–2097;
- 60gQ. Cai, C. Zheng, S.-L. You, Angew. Chem. 2010, 122, 8848–8851; Angew. Chem. Int. Ed. 2010, 49, 8666–8669;
- 60hQ.-A. Chen, M.-W. Chen, C.-B. Yu, L. Shi, D.-S. Wang, Y. Yang, Y.-G. Zhou, J. Am. Chem. Soc. 2011, 133, 16432–16435;
- 60iZ.-Y. Han, D.-F. Chen, Y.-Y. Wang, R. Guo, P.-S. Wang, C. Wang, L.-Z. Gong, J. Am. Chem. Soc. 2012, 134, 6532–6535.
- 61For other applications of salts with chiral counteranions, see
- 61aY. N. Belokon’, V. I. Maleev, I. L. Mal′fanov, T. F. Savel′eva, N. S. Ikonnikov, A. G. Bulychev, D. L. Usanov, D. A. Kataev, M. North, Russ. Chem. Bull. 2006, 55, 821–827;
- 61bQ.-W. Zhang, C.-A. Fan, H.-J. Zhang, Y.-Q. Tu, Y.-M. Zhao, P. Gu, Z.-M. Chen, Angew. Chem. 2009, 121, 8724–8726; Angew. Chem. Int. Ed. 2009, 48, 8572–8574;
- 61cY. N. Belokon’, V. I. Maleev, D. A. Kataev, T. F. Savelava, T. V. Skrupskaya, Y. N. Nelyubina, M. North, Tetrahedron: Asymmetry 2009, 20, 1746–1752;
- 61dK. Shen, X. Liu, Y. Cai, L. Lin, X. Feng, Chem. Eur. J. 2009, 15, 6008–6014;
- 61eJ. Lv, X. Li, L. Zhong, S. Luo, J.-P. Cheng, Org. Lett. 2010, 12, 1096–1099;
- 61fF. Drouet, C. Lalli, H. Liu, G. Masson, J. Zhu, Org. Lett. 2011, 13, 94–97;
- 61gU. Hennecke, C. H. Müller, F. Fröhlich, Org. Lett. 2011, 13, 860–863;
- 61hG. K. Ingle, Y. Liang, M. G. Mormino, G. Li, F. R. Fronczek, J. C. Antilla, Org. Lett. 2011, 13, 2054–2057;
- 61iM. Rueping, T. Bootwicha, S. Kambutong, E. Sugiono, Chem. Asian J. 2012, 7, 1195–1198.
- 62
- 62aE. B. Rowland, G. B. Rowland, E. Rivera-Otero, J. C. Antilla, J. Am. Chem. Soc. 2007, 129, 12084–12085; for a similar study by the Della Sala group, see G. Della Sala, A. Lattanzi, Org. Lett. 2009, 11, 3330–3333.
- 63
- 63aD. Nakashima, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 9626–9627; for a review on catalysis with this type of chiral Brønsted acids, see
- 63bM. Rueping, B. J. Nachtsheim, W. Ieawsuwan, I. Atodiresei, Angew. Chem. 2011, 123, 6838–6853;
10.1002/ange.201100169 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 6706–6720.
- 64
- 64aD. Kampen, A. Ladépêche, G. Claßen, B. List, Adv. Synth. Catal. 2008, 350, 962–966;
- 64bS. C. Pan, B. List, Chem. Asian J. 2008, 3, 430–437;
- 64cM. Hatano, T. Maki, K. Morizama, M. Arinobe, K. Ishihara, J. Am. Chem. Soc. 2008, 130, 16858–16860.
- 65TfOH: pKa=−5.9 in water, see
- 65aJ. P. Guthrie, Can. J. Chem. 1978, 56, 2342–2354; Tf2NH: pKa=1.7 in water, see
- 65bJ. Foropoulos, Jr., D. D. DesMarteau, Inorg. Chem. 1984, 23, 3720–3723; for the comparison of the Lewis acidities, see
- 65cB. Mathieu, L. Ghosez, Tetrahedron Lett. 1997, 38, 5497–5590.
- 66For further studies on the disulfonimide motif, see
- 66aM. Treskow, J. Neudörfl, R. Giernoth, Eur. J. Org. Chem. 2009, 3693–3697;
- 66bH. He, L.-Y. Chen, W.-Y. Wong, W.-H. Chan, A. W. M. Lee, Eur. J. Org. Chem. 2010, 4181–4184;
- 66cA. Berkessel, P. Christ, N. Leconte, J.-M. Neudörfl, M. Schäfer, Eur. J. Org. Chem. 2010, 5165–5170;
- 66dL.-Y. Chen, H. He, W.-H. Chan, A. W. M. Lee, J. Org. Chem. 2011, 76, 7141–7147.
- 67
- 67aK. Ishihara, Y. Hiraiwa, H. Yamamoto, Synlett 2001, 1851–1854;
- 67bJ. Cossy, F. Lutz, V. Alauze, C. Meyer, Synlett 2002, 45–48.
- 68T. K. Hollis, B. Bosnich, J. Am. Chem. Soc. 1995, 117, 4570–4581.
- 69P. García-García, F. Lay, P. García-García, C. Rabalakos, B. List, Angew. Chem. 2009, 121, 4427–4430;
10.1002/ange.200901768 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 4363–4366.
- 70
- 70aK. Ishihara, Y. Hiraiwa, H. Yamamoto, Chem. Commun. 2002, 1564–1565;
- 70bY. Hiraiwa, K. Ishihara, H. Yamamoto, Eur. J. Org. Chem. 2006, 1837–1844.
- 71L. Ratjen, P. García-García, F. Lay, M. E. Beck, B. List, Angew. Chem. 2011, 123, 780–784; Angew. Chem. Int. Ed. 2011, 50, 754–758.
- 72J. Guin, C. Rabalakos, B. List, Angew. Chem. 2012, 124, 8989–8993;
10.1002/ange.201204262 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 8859–8863.