Nanosized [Pd52(CO)36(PEt3)14] and [Pd66(CO)45(PEt3)16] Clusters Based on a Hypothetical Pd38 Vertex-Truncated ν3 Octahedron†
Evgueni G. Mednikov Dr.
Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA, Fax: (+1) 608-262-6143
Search for more papers by this authorSergei A. Ivanov Dr.
Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA, Fax: (+1) 608-262-6143
Search for more papers by this authorIrina V. Slovokhotova
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
Search for more papers by this authorLawrence F. Dahl Prof.
Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA, Fax: (+1) 608-262-6143
Search for more papers by this authorEvgueni G. Mednikov Dr.
Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA, Fax: (+1) 608-262-6143
Search for more papers by this authorSergei A. Ivanov Dr.
Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA, Fax: (+1) 608-262-6143
Search for more papers by this authorIrina V. Slovokhotova
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
Search for more papers by this authorLawrence F. Dahl Prof.
Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA, Fax: (+1) 608-262-6143
Search for more papers by this authorThis research was supported by the National Science Foundation. Color figures were prepared with Crystal Maker, Interactive Crystallography Software [David C. Palmer, Begbroke Park, Bldg 5, Sandy Lake, Yarnton OX5 1PF (UK)]. The authors are grateful to Dr. Ilia Guzei (UW-Madison) and Prof. Yuri Slovokhotov (Nesmeyanov Institute of Organoelement Compounds, RAS, Moscow) for crystallographic advice.
Graphical Abstract
Room for one more? The structures of nanosized Pd52 and Pd66 clusters that are based upon a common Pd38 vertex-truncated ν-octahedral kernel have been determined. The 45 CO ligands in the Pd66 cluster (see core structure), [Pd66(CO)45(PEt3)16], are described in terms of one extra and 44 normal ligands, two of which undergo rearrangement to accommodate the 45th CO ligand without causing any substantial changes to the architecture of the metal core.
References
- 1For reviews, see:
- 1aO. A. Belyakova, Yu. L. Slovokhotov, Russ. Chem. Bull. (Engl. Transl.) 2003, 52, 2299;
- 1bD. Collini, C. Femoni, M. C. Iapalucci, G. Longoni, P. Zanello in Perspectives in Organometallic Chemistry (Eds.: C. G. Screttas, B. R. Steele), Special Publication No. 287, Royal Society of Chemistry, 2003, 183;
- 1cT. A. Stromnova, I. I. Moiseev, Usp. Khim. 1998, 67, 542. [Russ. Chem. Rev. (Engl. Transl.) 1998, 67, 485];
- 1dA. D. Burrows, D. M. P. Mingos, Transition Met. Chem. 1993, 18, 129;
- 1eR. B. King, Gazz. Chim. Ital. 1992, 122, 383;
- 1fN. K. Eremenko, S. P. Gubin, Pure Appl. Chem. 1990, 62, 1179;
- 1gK. C. C. Kharas, L. F. Dahl, Adv. Chem. Phys. 1988, 70 (Part 2), 1;
- 1hN. K. Eremenko, E. G. Mednikov, S. S. Kurasov, Usp. Khim. 1985, 54, 671. [Russ. Chem. Rev. (Engl. Transl.) 1985, 54, 394].
- 2aE. G. Mednikov, N. K. Eremenko, V. A. Mikhailov, S. P. Gubin, Yu. L. Slovokhotov, Yu. T. Struchkov, J. Chem. Soc. Chem. Commun. 1981, 989;
- 2bE. G. Mednikov, N. K. Eremenko, Yu. L. Slovokhotov, Yu. T. Struchkov, S. P. Gubin, J. Organomet. Chem. 1983, 258, 247;
- 2cD. M. P. Mingos, C. M. Hill, Croat. Chem. Acta 1995, 67, 745;
- 2dE. G. Mednikov, Yu. T. Struchkov, Yu. L. Slovokhotov, J. Organomet. Chem. 1998, 566, 15;
- 2eM. Kawano, J. W. Bacon, C. F. Campana, B. E. Winger, J. D. Dudeck, S. A. Sirchio, S. L. Scruggs, U. Geiser, L. F. Dahl, Inorg. Chem. 2001, 40, 2554;
- 2fE. G. Mednikov, Yu. L. Slovokhotov, Yu. T. Struchkov, Metalloorg. Khim. 1991, 4, 123. [Organomet. Chem. USSR (Engl. Transl.) 1991, 4, 65];
- 2gN. T. Tran, M. Kawano, L. F. Dahl, J. Chem. Soc. Dalton Trans. 2001, 2731;
- 2hE. G. Mednikov, N. K. Eremenko, Yu. L. Slovokhotov, Yu. T. Struchkov, J. Organomet. Chem. 1986, 301, C 35;
- 2iE. G. Mednikov, J. Wittayakun, L. F. Dahl, J. Cluster Sci. 2005, 16, in press;
- 2jE. G. Mednikov, N. K. Eremenko, Yu. L. Slovokhotov, Yu. T. Struchkov, Zh. Vses. Khim. O-va. im. D. I. Mendeleeva 1987, 32, 101;
- 2kE. G. Mednikov, S. A. Ivanov, L. F. Dahl, Angew. Chem. 2003, 115, 337;
10.1002/ange.200390075 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 323;
- 2lE. G. Mednikov, N. I. Kanteeva, Izv. Akad. Nauk Ser. Khim. 1995, 167. [Russ. Chem. Bull. (Engl. Transl.) 1995, 44, 163];
- 2mE. G. Mednikov, N. K. Eremenko, Yu. L. Slovokhotov, Yu. T. Struchkov, J. Chem. Soc. Chem. Commun. 1987, 218;
- 2nN. T. Tran, M. Kawano, D. R. Powell, L. F. Dahl, J. Am. Chem. Soc. 1998, 120, 10986;
- 2oN. T. Tran, L. F. Dahl, Angew. Chem. 2003, 115, 3657; Angew. Chem. Int. Ed. 2003, 42, 3533;
- 2pN. T. Tran, D. R. Powell, L. F. Dahl, Angew. Chem. 2000, 112, 4287;
Angew. Chem. Int. Ed. 2000, 39, 4121.
10.1002/1521-3773(20001117)39:22<4121::AID-ANIE4121>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 3
- 3aA mixture of [Pd10(CO)12(PEt3)6] (3)[3b] (0.200 g, 0.095 mmol) and [Pd2(dba)3] (0.304 g, 0.332 mmol) in Me2CO (7 mL) and iPr2O (2 mL) was stirred for 4.5 h under N2 at 50 °C. The resulting brown solution was filtered from the black precipitate of [Pd34(CO)24(PEt3)12] (4) and left under H2O vapor. Black block crystals of 1 were isolated and washed with MeOH (estimated yield<5 %); IR (nujol): =1875 (sh), 1856 cm−1 (s). The black precipitate of 4 (0.182 g, 67 % yield based on combined content of palladium in 3 and [Pd2(dba)3], or 114 % based on 3) was identified by its IR spectrum (nujol): =1892 (s), 1867 (s), 1837 (s), 1810 cm−1 (s–m).[2l] The yield of 4 calculated on the basis of 3 unambiguously indicates its formation from both 3 and [Pd2(dba)3]. A crystal of 1 of dimensions 0.30×0.20×0.20 mm3 was used for the determination of the crystal structure;
- 3bE. G. Mednikov, N. K. Eremenko, Izv. Akad. Nauk SSSR Ser. Khim. 1982, 2540. [Bull. Acad. Sc. USSR Div. Chem. Sc. (Engl. Transl.) 1982, 31, 2240].
- 4In a typical experiment [Pd10(CO)12(PEt3)6] (3; 0.150 g, 0.071 mmol) and Me3NO⋅2 H2O (0.127 g, 1.143 mmol) were dissolved in a mixture of Me2CO (7.5 mL), THF, iPr2O or Et2O (2.5 mL), and CF3CO2H (0.66 mL, 8.57 mmol) in a 100-mL flask with 4–6 min of ultrasonication or heating (≈35 °C) under Ar. After ten days, black plate arrow-end crystals of 2′ were isolated by decanting the mother liquors and washed with acetone (50–55 mg, 45–50 %). Elemental analysis (Zelinsky Institute of Organic Chemistry): calcd (%) for Pd66(CO)46(PEt3)16: C 16.72, H 2.37, P 4.86, Pd 68.84; found: C 16.38, H 2.30, P 4.89, Pd 69.28; IR (nujol): =1883–1881 cm−1 (s br). Crystals obtained from this procedure were monoclinic with a β angle close to 90°; for example, a=20.417(5), b=35.711(9), c=30.877(11) Å, β=90.04(2)°, V=22 512(12) Å3; or a=20.48(1), b=35.48(4), c=30.55(2) Å, β=90.10(5)°, V=22 194(49) Å3, etc. Solution of the structural data from their X-ray data sets could not be refined but did disclose the {Pd66P16} fragment of 2′.
- 5[Pd10(CO)12(PEt3)6] (3; 0.150 g, 0.071 mmol) and [Pd(MeCN)4](BF4)2 (0.063 g, 0.142 mmol) were dissolved in a mixture of THF (10 mL) and Me2CO (5 mL) under N2. On the next day, the solvent was evaporated and the black residue was extracted with MeCN. Crystallization in the presence of vapor from a 1:1 mixture of iPr2O/hexane gave black needlelike crystals of 2 (15 mg; 13 %). IR (nujol): =1884 cm−1 (s br) with shoulders at 1916 and 1867 cm−1. A crystal of dimensions 0.61×0.28×0.18 mm3 was used for the determination of the X-ray crystal structure.
- 6On a related note, a recent systematic preparative/structural investigation[2i] has provided compelling geometrical evidence for a previously unknown stereochemical example involving close-packed, nanosized cuboctahedral-based [Pd23(CO)x(PEt3)10] clusters that comprise structurally analogous {Pd23(PEt3)10} fragments with variable numbers of carbonyl ligands (x=20, 21, 22). This observed expanded capacity of CO coordination on the same centered Pd23 polyhedron from the thermodynamically stable structure with 20 CO ligands to the kinetic products with additional CO ligands (x=21, 22) without notable changes in the geometry of the common {Pd23(PEt3)10} fragment was attributed to the nanosized (≈0.8–0.9 nm) architecture of the metal core.
- 7
- 7a1: trigonal; R; a=b=17.303(2), c=51.067(13) Å, α=β=90°, γ=120°, V=13 240(4) Å3; Z=3, ρcalcd=3.083 Mg m−3. MoKα data collected at 173(2) K with Bruker SMART CCD-1000 area-detector diffractometer by 0.3ω scans over a 2θ range from 2.40 to 46.62°; empirical absorption correction (SADABS) applied; μ(MoKα)=5.328 mm−1; max/min transmission, 0.416/0.298. Full-matrix least-squares refinement (SHELXTL)[7c] (300 parameters; 27 restraints) on 4253 independent reflections converged at ωR2(F2)=0.176 with R1(F)=0.071 for I>2σ(I); GOF (on F2)=1.03; max/min residual electron density 8.87/−5.10 e Å−3. All non-hydrogen atoms were refined anisotropically, except for those of disordered carbonyl groups and disordered ethyl substituents;
- 7b2: monoclinic; P21/n; a=20.717(2), b=35.756(4), c=30.623(4) Å, β=90.904(1)°, V=22 682(5) Å3; Z=4, ρcalcd=2.979 Mg m−3. MoKα data collected at 100(2) K with Bruker SMART CCD-1000 area-detector diffractometer by 0.3ω scans over a 2θ range from 1.76 to 46.36°; empirical absorption correction (SADABS) applied; μ(MoKα)=5.247 mm−1; max/min transmission, 0.452/0.142. Full-matrix least-squares refinement (SHELXTL)[7c] (1540 parameters; 236 restraints) on 31 516 independent reflections converged at ωR2(F2)=0.278 with R1(F)=0.108 for I>2σ(I); GOF (on F2)=0.894; max/min residual electron density 3.48/−2.41 e Å−3. Palladium and phosphorus atoms were refined anisotropically. CCDC 276453 (1) and 276454 (2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif;
- 7cG. M. Sheldrick: SHELXTL version 6.10 Program Library, Bruker Analytical X-Ray Systems, Madison, WI, 2000
- 8
- 8aSimilar formal condensations of monocapped ν2 Pd7 triangles to centered metal hexagons are encountered in Pd30[2k] and Pd23[2h,i] clusters. The condensation of four noncapped ν2 Ni6 triangles on four centered hexagonal faces of a ccp Ag16 metal core was observed in the pseudo-Td [Ag16Ni24(CO)40]4− cluster[8b];
- 8bJ. Zhang, L. F. Dahl, J. Chem. Soc. Dalton Trans. 2002, 1269.
- 9aS. Martinengo, G. Ciani, and A. Sironi, J. Am. Chem. Soc. 1980, 102, 7565;
- 9bN. T. Tran, M. Kawano, D. R. Powell, L. F. Dahl, J. Chem. Soc. Dalton Trans. 2000, 4138;
- 9cC. Femoni, M. C. Iapalucci, G. Longoni, P. H. Svensson, J. Wolowska, Angew. Chem. 2000, 112, 1702;
10.1002/(SICI)1521-3757(20000502)112:9<1702::AID-ANGE1702>3.0.CO;2-2 Google ScholarAngew. Chem. Int. Ed. 2000, 39, 1635;10.1002/(SICI)1521-3773(20000502)39:9<1635::AID-ANIE1635>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 9dC. Femoni, M. C. Iapalucci, G. Longoni, P. H. Svensson, J. Chem. Soc. Chem. Commun. 2004, 2274.
- 10J. Donohue, The Structures of the Elements, Wiley, New York, 1974, p. 216.
- 11An anisotropic pancake-shaped displacement ellipsoid observed for the crystallographically independent monocapped Pd(10) atom, which lies on the crystallographic C3 axis of 1 (Figure 1), is attributed to it being randomly disordered among three sites toward each of the three equivalent inner Pd(4) atoms in the Pd6 triangle. Nevertheless, we consider its site displacements from the threefold axis to be relatively small such that Pd(10) still undergoes μ3 coordination with three threefold-related edge-bridging carbonyl ligands that span the three Pd(10)–Pd(4) edges. This premise is based upon the least-squares refinement, which indicates that the carbon and oxygen atoms of the crystallographically independent doubly bridging carbonyl group that connects Pd(10) to the inner Pd3 triangle have whole-weighted occupancy factors.
- 12
- 12aThe [CuxNi35−x(CO)40]5− cluster (x=3 or 5)[12b] provides another striking example of a nanosized close-packed metal-core carbonyl cluster that contains an extra carbonyl ligand. The presence of the extra CO moiety on one of three otherwise symmetry-equivalent sides of the metal core results in a markedly different arrangement on the side of the extra CO to the similar arrangements of CO groups on the other two sides. Its inclusion lowers the symmetry of the 35-atom triangular stacking-layer sequence from pseudo-D3h to Cs symmetry (i.e., a pseudo-vertical mirror plane);
- 12bP. D. Mlynek, M. Kawano, M. A. Kozee, L. F. Dahl, J. Cluster Sci. 2001, 12, 313.
- 13E. G. Mednikov, L. F. Dahl, unpublished results.
- 14
- 14aE. L. Muetterties, T. N. Rhodin, E. Band, C. F. Brucker, W. R. Pretzer, Chem. Rev. 1979, 79, 91, and references therein;
- 14bC. M. Friend, R. M. Gavin, E. L. Muetterties, M.-C. Tsai, J. Am. Chem. Soc. 1980, 102, 1717;
- 14cE. Shustorovich, R. G. Baetzold, E. L. Muetterties, J. Phys. Chem. 1983, 87, 1100;
- 14dG. Pacchioni, J. Koutecky, J. Phys. Chem. 1987, 91, 2658;
- 14eR. Hoffmann, Rev. Mod. Phys. 1988, 60, 601;
- 14fJ. E. Adams, J. Chem. Phys. 1990, 92, 1849;
- 14gB. C. Gates, Angew. Chem. 1993, 105, 240; Angew. Chem. Int. Ed. Engl. 1993, 32, 228.
- 15
- 15aP. Chini, J. Organomet. Chem. 1980, 200, 37;
- 15bA. Ceriotti, N. Masciocchi, P. Macchi, G. Longoni, Angew. Chem. 1999, 111, 3724;
10.1002/(SICI)1521-3773(19991216)38:24<3724::AID-ANIE3724>3.0.CO;2-S Google ScholarAngew. Chem. Int. Ed. 1999, 38, 3941, and references therein;
- 15cJ. D. Roth, G. J. Lewis, L. K. Safford, X. Jiang, L. F. Dahl, M. J. Weaver, J. Am. Chem. Soc. 1992, 114, 6159.
- 16C. Femoni, M. C. Iapalucci, G. Longoni, P. H. Svensson, Chem. Commun. 2001, 1776.
- 17
- 17aA. Ceriotti, F. Demartin, G. Longoni, M. Manassero, M. Marchionna, G. Piva, M. Sansoni, Angew. Chem. 1985, 97, 708; Angew. Chem. Int. Ed. Engl. 1985, 24, 697;
- 17bF. F. de Biani, C. Femoni, M. C. Iapalucci, G. Longoni, P. Zanello, A. Ceriotti, Inorg. Chem. 1999, 38, 3721;
- 17cC. Femoni, M. C. Iapalucci, G. Longoni, P. H. Svensson, P. Zanello, F. F. de Biani, Chem. Eur. J. 2004, 10, 2318.
- 18This current formulation for the Ni–Pt cluster is based on ref. [9d] (see footnote 2 therein), which states that “circumstantial evidence suggests the presence of two hydride atoms in the cluster originally formulated as [Ni24Pt14(CO)44]4−”.[16]