Redox-Switchable Phase Tags for Recycling of Homogeneous Catalysts†
Marcus Süßner Dipl.-Ing.
Anorganische Chemie im Zintl-Institut des FB Chemie, TU Darmstadt, Petersenstrasse 18, 64287 Darmstadt, Germany, Fax: (+49) 6151-16-6040
Search for more papers by this authorHerbert Plenio Prof. Dr.
Anorganische Chemie im Zintl-Institut des FB Chemie, TU Darmstadt, Petersenstrasse 18, 64287 Darmstadt, Germany, Fax: (+49) 6151-16-6040
Search for more papers by this authorMarcus Süßner Dipl.-Ing.
Anorganische Chemie im Zintl-Institut des FB Chemie, TU Darmstadt, Petersenstrasse 18, 64287 Darmstadt, Germany, Fax: (+49) 6151-16-6040
Search for more papers by this authorHerbert Plenio Prof. Dr.
Anorganische Chemie im Zintl-Institut des FB Chemie, TU Darmstadt, Petersenstrasse 18, 64287 Darmstadt, Germany, Fax: (+49) 6151-16-6040
Search for more papers by this authorThis work was supported by the TU Darmstadt and the DFG. We thank Dr. A. Köllhofer for assistance with the electrochemical experiments.
Graphical Abstract
A homogeneous catalytic complex is tagged with two ferrocenyl groups to control its solubility properties by reversible switching between its neutral and dicationic states (see scheme). This approach is carried out on an olefin-metathesis catalyst and is shown to effectively switch its catalytic activity on and off; furthermore, efficient separation of the catalyst from the reaction products and subsequent recycling of the catalyst is possible.
References
- 1C. E. Garrett, K. Prasad, Adv. Synth. Catal. 2004, 346, 889.
- 2K. Königsberger, G.-P. Chen, R. R. Wu, M. J. Girgis, K. Prasad, O. Repic, T. J. Blacklock, Org. Process Res. Dev. 2003, 7, 733.
- 3J. A. Gladysz, Chem. Rev. 2002, 102, 3215.
- 4D. J. Cole-Hamilton, Science 2003, 299, 1702.
- 5D. E. Bergbreiter, Chem. Rev. 2002, 102, 3345.
- 6M. an der Heiden, H. Plenio, Chem. Eur. J. 2004, 10, 1789.
- 7A. Köllhofer, H. Plenio, Chem. Eur. J. 2003, 9, 1416.
- 8M. Wende, J. A. Gladysz, J. Am. Chem. Soc. 2003, 125, 5861.
- 9P. B. Webb, M. F. Sellin, T. E. Kunene, S. Williamson, A. M. Z. Slawin, D. J. Cole-Hamilton, J. Am. Chem. Soc. 2003, 125, 15577.
- 10D. E. Bergbreiter, P. L. Osburn, T. Smith, C. Li, J. D. Frels, J. Am. Chem. Soc. 2003, 125, 6254.
- 11 Aqueous-Phase Organometallic Chemistry, (Eds.: ), Wiley-VCH, Weinheim, 1998.
- 12A. Datta, K. Ebert, H. Plenio, Organometallics 2003, 22, 4685.
- 13H. P. Dijkstra, G. P. M. vanKlink, G. vanKoten, Acc. Chem. Res. 2002, 35, 798.
- 14R. W. J. Scott, O. M. Wilson, S.-K. Oh, E. A. Kenik, R. M. Crooks, J. Am. Chem. Soc. 2004, 126, 15583.
- 15K. Okamoto, R. Akiyama, H. Yoshida, T. Yoshida, S. Kobayashi, J. Am. Chem. Soc. 2005, 127, 2125.
- 16F. Gelman, J. Blum, D. Avnir, J. Am. Chem. Soc. 2002, 124, 14460.
- 17C. P. Mehnert, R. A. Cook, N. C. Dispenziere, M. Afeworki, J. Am. Chem. Soc. 2002, 124, 12932.
- 18C. A. McNamara, M. J. Dixon, M. Bradley, Chem. Rev. 2002, 102, 3275.
- 19J. Sommer, Y. Yang, D. Rambow, J. Blümel, Inorg. Chem. 2004, 43, 7561.
- 20V. K. Dioumaev, R. M. Bullock, Nature 2003, 424, 530.
- 21C. W. Kohlpaintner, R. W. Fischer, B. Cornils, Appl. Catal. A 2001, 221, 219.
- 22A. Datta, H. Plenio, Chem. Commun. 2003, 1504.
- 23J. Hillerich, H. Plenio, Chem. Commun. 2003, 3024.
- 24D. P. Curran, Angew. Chem. 1998, 110, 1230;
10.1002/(SICI)1521-3757(19980504)110:9<1230::AID-ANGE1230>3.0.CO;2-Y Google ScholarAngew. Chem. Int. Ed. 1998, 37, 1174 (Erratum:10.1002/(SICI)1521-3773(19980518)37:9<1174::AID-ANIE1174>3.0.CO;2-P CAS PubMed Web of Science® Google ScholarD. P. Curran, Angew. Chem. 1998, 110, 2569;10.1002/(SICI)1521-3757(19980504)110:9<1230::AID-ANGE1230>3.0.CO;2-Y Google ScholarAngew. Chem. Int. Ed. 1998, 37, 2292).
- 25M. E. Honigfort, W. J. Brittain, T. Bosanac, C. S. Wilcox, Macromolecules 2002, 35, 4849.
- 26K. Grela, M. Tryznowskib, M. Bieniek, Tetrahedron Lett. 2002, 43, 9055.
- 27J. J. V. Veldhuizen, S. B. Garber, J. S. Kingsbury, A. H. Hoveyda, J. Am. Chem. Soc. 2002, 124, 4954.
- 28L. Jafarpour, M.-P. Heck, C. Baylon, H. M. Lee, C. Mioskowski, S. P. Nolan, Organometallics 2002, 21, 671.
- 29Q. Yao, Y. Zhang, Angew. Chem. 2003, 115, 3517; Angew. Chem. Int. Ed. 2003, 42, 3395.
- 30S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168.
- 31M. R. Buchmeiser, New J. Chem. 2004, 28, 549.
- 32S. J. Connon, A. M. Dunne, S. Blechert, Angew. Chem. 2002, 114, 3989;
10.1002/1521-3757(20021018)114:20<3989::AID-ANGE3989>3.0.CO;2-D Google ScholarAngew. Chem. 2002, 41, 3835.10.1002/1521-3773(20021018)41:20<3835::AID-ANIE3835>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 33N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877.
- 34Dynamic phase-tag switching of 1: Diallyltosylamide (25 mg, 0.1 mmol) was added to a solution of 1 (0.8 mg, 1 mol %) in toluene (10 mL), and the reaction mixture was warmed to 35 °C. After 3 h, the solution was cooled to room temperature with subsequent addition of [FcCOCH3][BF4] (2 equiv) in CH2Cl2 (200 mL; c=0.01 mol L−1) to oxidize/precipitate 12+. The solution was filtered over cotton wool, and the volatiles were evaporated to obtain the crude product. The cotton wool was rinsed with CH2Cl2 (0.5 mL) to dissolve 12+, which was subsequently treated with a solution of FcMe8 (2.1 equiv) in toluene (300 mL; c=7.0⋅10−3 mol L−1) to regenerate 1. After addition of fresh toluene (10 mL) and diallyltosylamide (25 mg, 0.1 mmol), a new reaction cycle was started. The whole procedure was repeated three times, and quantitative product formation was observed after each cycle. The switching on/off of catalyst 1 during the reaction was carried out by addition of solutions of [FcCOCH3][BF4] (1→12+=off) and FcMe8 (12+→1=on) as oxidizing and reducing agents, respectively. Spectroscopic data of 1: 1H NMR (500 MHz, C6D6): δ=1.37 (d, 6 H, J=6.0 Hz, (CH3)2CHOAr), 2.61 (b s, 12 H, ortho-CH3), 2.73 (m, 4 H, CH2), 2.86 (m, 4 H, CH2), 3.47 (s, 4 H, NCH2CH2N), 4.03 (“t”, 4 H, J=1.8 Hz, FcH), 4.09 (s, 10 H, FcH), 4.12 (“t”, 4 H, J=1.8 Hz, FcH), 4.52 (sept, 1 H, J=6.2 Hz, (CH3)2CHOAr), 6.35 (d, 1 H, J=8.3 Hz, sp2 CH), 6.73 (t,1 H, J=7.4 Hz, sp2 CH), 7.05 (s, 4 H, meta-CH), 7.10 (m, 1 H, sp2 CH), 7.20 (dd, 1 H, J=7.6, 1.6 Hz, sp2 CH), 16.74 ppm (s, 1 H, RuCHAr); 13C NMR (125.75 MHz, C6D6): δ=19.5, 20.2, 29.5, 36.6, 50.0, 66.4, 67.1, 67.6, 73.7, 87.5, 111.9, 120.7, 121.1, 123.2, 127.7, 142.0, 144.5, 151.3, 211.6, 293.5 ppm.
- 35The rates of the catalytic reactions depicted in Figures 2 and 3 are different as the concentration of the catalyst and substrates were individually adjusted to suit the sensitivity of GC-FID (Figure 2) and 1H NMR spectroscopic detection (Figure 3).
- 36E. Katz, R. Baron, I. Willner, J. Am. Chem. Soc. 2005, 127, 4060.
- 37L. Kovbasyuk, R. Krämer, Chem. Rev. 2004, 104, 3161.
- 38D. Schoeps, H. Plenio, unpublished results.