Al20X10 (X=Cl, Br): Snapshots of the Formation of Metalloid Clusters from Polyhedral AlnXm Molecules?†
Jean Vollet Dr.
Institut für Anorganische Chemie, Universität Karlsruhe (TH), Engesserstrasse, Geb. 30.45, 76128 Karlsruhe, Germany, Fax: (+49) 721-608-4854
Search for more papers by this authorRalf Burgert
Institut für Anorganische Chemie, Universität Karlsruhe (TH), Engesserstrasse, Geb. 30.45, 76128 Karlsruhe, Germany, Fax: (+49) 721-608-4854
Search for more papers by this authorHansgeorg Schnöckel Prof. Dr.
Institut für Anorganische Chemie, Universität Karlsruhe (TH), Engesserstrasse, Geb. 30.45, 76128 Karlsruhe, Germany, Fax: (+49) 721-608-4854
Search for more papers by this authorJean Vollet Dr.
Institut für Anorganische Chemie, Universität Karlsruhe (TH), Engesserstrasse, Geb. 30.45, 76128 Karlsruhe, Germany, Fax: (+49) 721-608-4854
Search for more papers by this authorRalf Burgert
Institut für Anorganische Chemie, Universität Karlsruhe (TH), Engesserstrasse, Geb. 30.45, 76128 Karlsruhe, Germany, Fax: (+49) 721-608-4854
Search for more papers by this authorHansgeorg Schnöckel Prof. Dr.
Institut für Anorganische Chemie, Universität Karlsruhe (TH), Engesserstrasse, Geb. 30.45, 76128 Karlsruhe, Germany, Fax: (+49) 721-608-4854
Search for more papers by this authorWe thank the Deutsche Forschungsgemeinschaft, the Center for Functional Nanostructures (CFN), and the Fonds der Chemischen Industrie for financial support.
Graphical Abstract
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2005/z500671_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. A. Cotton, Q. Rev. Chem. Soc. 1966, 20, 397.
- 2A. Schnepf, H. Schnöckel, Angew. Chem. 2002, 114, 3683;
Angew. Chem. Int. Ed. 2002, 41, 3532.
10.1002/1521-3773(20021004)41:19<3532::AID-ANIE3532>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 3H. Schnöckel, A. Schnepf, Adv. Organomet. Chem. 2001, 47, 235.
- 4D. E. Bergeron, P. J. Roach, A. W. Castleman Jr.,N. O. Jones, S. N. Khanna, Science 2005, 307, 231.
- 5D. E. Bergeron, A. W. Castleman, T. Morisato, S. N. Khanna, Science 2004, 304, 84.
- 6C. Klemp., R. Köppe, E. Weckert, H. Schnöckel, Angew. Chem. 1999, 111, 1851;
10.1002/(SICI)1521-3757(19990614)111:12<1851::AID-ANGE1851>3.0.CO;2-Q Web of Science® Google ScholarAngew. Chem. Int. Ed. 1999, 38, 1740.10.1002/(SICI)1521-3773(19990614)38:12<1739::AID-ANIE1739>3.0.CO;2-6 CAS Web of Science® Google Scholar
- 7C. Klemp, M. Bruns, J. Gauss, U. Häussermann, G. Stößer, L. van Wuellen, M. Jansen, H. Schnöckel, J. Am. Chem. Soc. 2001, 123, 9099.
- 8C. Dohmeier, C. Robl, M. Tacke, H. Schnöckel, Angew. Chem. 1991, 103, 594; Angew. Chem. Int. Ed. Engl. 1991, 30, 564.
- 9M. Mocker, C. Robl, H. Schnöckel, Angew. Chem. 1994, 106, 1860; Angew. Chem. Int. Ed. Engl. 1994, 33, 862.
- 10Crystal structure data of 1 ([Al20Br10⋅2 n-C7H16]): Z=2, Mw=2620.86 g mol−1, crystal dimensions: 0.65×0.5×0.2 mm3, triclinic, space group P, a=18.9019(6), b=13.0056(4), c=24.6656(8) Å, α=80.523(3), β=84.549(2), γ=90.231(2)°, V=5952.6(3) Å3, ρcalcd=1.462 g cm−3, F(000)=2652, T=150(2) K, μ(MoKα)=3.553 mm−1, 35 320 reflections, 15 611 independent (Rint=0.0368), refinement on F2 (2θmax=46.24°), 14 556 independent (2σ), 1597 parameters, 0 restraints, R1(I>2σ(I))=0,0343, wR2 (all data)=0.0933, GooF (F2)=1,045, ρ(min/max)=−0.559/0.835 e Å−3; unit cell determination: 63 356 reflections; Lorentz, polarization, and numerical absorption correction: Tmin/Tmax=0.1316/0.4191; 2 ({Al20Cl10⋅n-C5H12}): Z=4, Mw=2048.01 g mol−1, crystal dimensions: 0.2×0.15×0.1 mm3, monoclinic, space group P2(1)/c, a=12.9034(7), b=26.7258(11), c=31.431(3) Å, β=95.129(6)°, V=10 795.8(12) Å3, ρcalcd=1.260 g cm−3, F(000)=4288, T=150(2) K, μ(MoKα)=0.460 mm−1, 25 241 reflections, 13 269 independent (Rint=0.0928), refinement on F2 (2θmax=44.58°), 6331 independent (2σ), 1045 parameters, 0 restraints, R1(I>2σ(I))=0.0546, wR2 (all data)=0.1309, GooF (F2)=0.834, ρ(min/max)=−0.282/0.366 e Å−3; unit cell determination: 10 839 reflections; Lorentz, polarization, and numerical absorption correction: Tmin/Tmax=0.7954/0.9623; 5 ([{AlBr2⋅NEt3}2]): Z=8, Mw=575.98 g mol−1, crystal dimensions: 0.6×0.6×0.2 mm3, orthorhombic, space group Pna2(1), a=14.8678(9), b=20.6342(12), c=14.4841(11) Å, V=4443.5(5) Å3, ρcalcd=1.772 g cm−3, F(000)=2256, T=199(2) K, μ(MoKα)=7.319 mm−1, 30 477 reflections, 8594 independent (Rint=0.0675), refinement on F2 (2θmax=51,88°), 7271 independent (2σ), 362 parameters, 1 restraint, R1(I>2σ(I))=0.0378, wR2 (all data)=0.0913, GooF (F2)=0.967, ρ(min/max)=−0.542/1.156 e Å−3; unit cell determination: 8000 reflections; Lorentz, polarization, and numerical absorption correction: Tmin/Tmax=0.0423/0.2916; 6 ({AlBr3⋅NEt3}): Z=2, Mw=367.90 g mol−1, crystal dimensions: 0.4×0.3×0.2 mm3, monoclinic, space group P2(1), a=7.2921(11), b=11.8660(16), c=7.9135(12) Å, β=117.907(11)°,V=605.11(15) Å3, ρcalcd=2.019 g cm−3, F(000)=352, T=293(2) K, μ(MoKα)=10.024 mm−1, 2706 reflections, 2112 independent (Rint=0.0669), refinement on F2 (2θmax=52.14°), 2004 independent (2σ), 101 parameters, 1 restraint, R1(I>2σ(I))=0.0513, wR2 (all data)=0.1346, GooF (F2)=1.050, ρ(min/max)=−0.719/0.695 e Å−3; unit cell determination: spherical absorption correction. Diffractometer: λ=0.7103 Å, Stoe-IPDS-2-area detector (IPDS), two-circle goniometer; Software: SHELXS-97, SHELXL-97, Stoe-IPDS software; structural refinement with direct methods, H atoms calculated. CCDC-263377 (1), CCDC-263378 (2), CCDC-263375 (5), and CCDC-263376 (6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 11K. Wade, J. Chem. Soc. Chem. Commun. 1971, 792; K. Wade, Adv. Inorg. Radiochem. 1976, 18, 1.
- 12K. W. Klinkhammer, W. Uhl, J. Wagner, W. Hiller, Angew. Chem. 1991, 103, 182;
10.1002/ange.19911030211 Google ScholarAngew. Chem. Int. Ed. Engl. 1991, 30, 179.
- 13The ab initio calculations for compound 2 were carried out with the TURBOMOLE program package: O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346. The geometry was optimized with the RI-DFT module:
- 13aK. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652;
- 13bK. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chim. Acta 1997, 97, 119. The BP86 functional with SVP basis sets was used for all chemical elements:
- 13cA. D. Becke, Phys. Rev. A 1998, 38, 3098;
- 13dJ. P. Perdew, Phys. Rev. B 1996, 33, 8822. Calculations of NMR shifts were carried out with the MPSHIFT module with the GIAO method on the SCF level, using SCF molecular orbitals with the molecular geometry obtained by DFT methods:
- 13eG. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606;
- 13fM. Häser, R. Ahlrichs, H. P. Baron, P. Weiss, H. Horn, Theor. Chim. Acta 1992, 83, 455.
- 14The synthesis also succeeded when the donor component of the AlCl solution was reduced at low temperatures in vacuo; see the Experimental Section.
- 15This type of dehalogenation has been described for the formation of SiAl14 from halogenated precursors: A. Purath, C. Dohmeier, A. Ecker, R. Köppe, H. Krautscheid, H. Schnöckel, R. Ahlrichs, C. Stoermer, J. Friedrich, P. Jutzi, J. Am. Chem. Soc. 2000, 122, 6955.
- 16Here connections to boron chemistry with its B12X12 cages and the groundbreaking work of W. Uhl on the Al12R12 dianion (R=isobutyl, see ref. [12]) become apparent.
- 17H. Schnöckel, C. Klemp in Inorganic Chemistry Highlights (Eds.: ), Wiley-VCH, Weinheim, 2002, p. 245.
- 18For example, Al77(N(SiMe3)2)202−: A. Ecker, E. Weckert, H. Schnöckel, Nature 1997, 387, 379.
- 19The energy difference between the more stable icosahedral Al13 cluster and the cuboctahedral Al13 cluster is only about 55 kJ mol−1 according to quantum-chemical calculations. Thus it can be expected that different conditions, for example, in solution or in the gas phase could yield cuboctahedral as well as icosahedral Al13 species: R. Ahlrichs, S. D. Elliott, Phys. Chem. Chem. Phys. 1999, 1, 13.
- 20This statement can, for example, be supported by the structures of both the Al14I anion, which was detected by mass spectrometry and calculated using quantum-chemical methods (see ref. [5]), and of the metalloid cluster [Al14I6R6]2− (R=N[SiMe3]2), because both structures with their centered arrangement of Al atoms show similarities to the bulk phase (see the Supporting Information). [Al14I6R6]2−: H. Köhnlein, G. Stößer, E. Baum, E. Möllhausen, U. Huniar, H. Schnöckel, Angew. Chem. 2000, 112, 828;
10.1002/(SICI)1521-3757(20000218)112:4<828::AID-ANGE828>3.0.CO;2-W Google ScholarAngew. Chem. Int. Ed. 2000, 39, 799.10.1002/(SICI)1521-3773(20000218)39:4<799::AID-ANIE799>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 21
- 21aAfter the isolation of a Ga24X22 halide, a hypothetical new gallium modification was recently proposed in a similar thought experiment using quantum-chemical calculations: T. Duan, E. Baum, R. Burgert, H. Schnöckel, Angew. Chem. 2004, 116, 3252; Angew. Chem. Int. Ed. 2004, 43, 3190;
- 21bU. Häussermann, S. I. Simak, R. Ahuja, B. Johansson, Phys. Rev. Lett. 2003, 90, 065701.
- 22J. Vollet, J. R. Hartig, H. Schnöckel, Angew. Chem. 2004, 116, 3248;
10.1002/ange.200453754 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 3186.