Strategies for Catalytic Asymmetric Electrophilic α Halogenation of Carbonyl Compounds†
Martin Oestreich Dr.
Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, 79104 Freiburg, Germany, Fax: (+49) 761-203-6100
Search for more papers by this authorMartin Oestreich Dr.
Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, 79104 Freiburg, Germany, Fax: (+49) 761-203-6100
Search for more papers by this authorM.O. is indebted to the Deutsche Forschungsgemeinschaft for an Emmy Noether fellowship (2001–2005) and to Professor Reinhard Brückner for his continuous encouragement.
Graphical Abstract
Mission possible: Today, catalytic asymmetric variants of nearly all fundamental bond-forming reactions are known, yet catalyst-controlled enantioselective construction of carbon–halogen bonds (see scheme; X=F, Cl, Br) was still missing. This gap has now been filled by a cornucopia of conceptually diverse approaches that provide a novel tool for asymmetric organic synthesis.
References
- 1For an excellent account, see: H. Ibrahim, A. Togni, Chem. Commun. 2004, 1147–1155.
- 2For reviews of noncatalytic stereoselective carbon–fluorine bond formation, see:
- 2aS. D. Taylor, C. C. Kotoris, G. Hum, Tetrahedron 1999, 55, 12 431–12 477;
- 2bK. Muñiz, Angew. Chem. 2001, 113, 1701–1704;
10.1002/1521-3757(20010504)113:9<1701::AID-ANGE17010>3.0.CO;2-2 Google ScholarAngew. Chem. Int. Ed. 2001, 40, 1653–1656.10.1002/1521-3773(20010504)40:9<1653::AID-ANIE16530>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 3For substrate-controlled, diastereoselective α-chlorination and α-bromination with 7 and 8, respectively, see:
- 3aW. Oppolzer, P. Dudfield, Tetrahedron Lett. 1985, 26, 5037–5040;
- 3bD. A. Evans, J. A. Ellman, R. L. Dorow, Tetrahedron Lett. 1987, 28, 1123–1126;
- 3cP. Duhamel, P. Angibaud, J. R. Desmurs, J. Y. Valnot, Synlett 1991, 807–808.
- 4For reagent-controlled, enantioselective α-fluorination of carbonyl compounds, see:
- 4aE. Differding, R. W. Lang, Tetrahedron Lett. 1988, 29, 6087–6090;
- 4bF. A. Davis, P. Zhou, C. K. Murphy, G. Sundarababu, H. Qi, W. Han, R. M. Przeslawski, B.-C. Chen, P. J. Carroll, J. Org. Chem. 1998, 63, 2273–2280;
- 4cZ. Liu, N. Shibata, Y. Takeuchi, J. Org. Chem. 2000, 65, 7583–7587;
- 4dN. Shibata, E. Suzuki, T. Asahi, M. Shiro, J. Am. Chem. Soc. 2001, 123, 7001–7009;
- 4eP. Mohar, J. Baudoux, J.-C. Plaquevent, D. Cahard, Angew. Chem. 2001, 113, 4339–4341;
10.1002/1521-3757(20011119)113:22<4339::AID-ANGE4339>3.0.CO;2-I Google ScholarAngew. Chem. Int. Ed. 2001, 40, 4214–4216.10.1002/1521-3773(20011119)40:22<4214::AID-ANIE4214>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 5L. Hintermann, A. Togni, Angew. Chem. 2000, 112, 4530–4533;
10.1002/1521-3757(20001201)112:23<4530::AID-ANGE4530>3.0.CO;2-D Google ScholarAngew. Chem. Int. Ed. 2000, 39, 4359–4362.10.1002/1521-3773(20001201)39:23<4359::AID-ANIE4359>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 6
- 6aL. Hintermann, A. Togni, Helv. Chim. Acta 2000, 83, 2425–2435;
- 6bH. Ibrahim, F. Kleinbeck, A. Togni, Helv. Chim. Acta 2004, 87, 605–610.
- 7S. Piana, I. Devillers, A. Togni, U. Rothlisberger, Angew. Chem. 2002, 114, 1021–1024;
10.1002/1521-3757(20020315)114:6<1021::AID-ANGE1021>3.0.CO;2-4 Google ScholarAngew. Chem. Int. Ed. 2002, 41, 979–982.
- 8For related Lewis acid catalysis in α-fluorination, see:
- 8aY. Hamashima, K. Yagi, H. Takano, L. Tomás, M. Sodeoka, J. Am. Chem. Soc. 2002, 124, 14 530–14 531;
- 8bJ.-A. Ma, D. Cahard, Tetrahedron: Asymmetry 2004, 15, 1007–1011;
- 8cN. Shibata, T. Ishimaru, T. Nagai, J. Kohno, T. Toru, Synlett 2004, 1703–1706.
- 9For related Lewis acid catalysis in α-chlorination and α-bromination, see:
- 9aM. Marigo, N. Kumaragurubaran, K. A. Jørgensen, Chem. Eur. J. 2004, 10, 2133–2137;
- 9bL. Bernardi, K. A. Jørgensen, Chem. Commun. 2005, 1324–1326.
- 10D. Y. Kim, E. J. Park, Org. Lett. 2002, 4, 545–547.
- 11
- 11aFor a current account, see: S. France, A. Weatherwax, T. Lectka, Eur. J. Org. Chem. 2005, 475–479;
- 11bH. Wack, A. E. Taggi, A. M. Hafez, W. J. Drury III, T. Lectka, J. Am. Chem. Soc. 2001, 123, 1531–1532;
- 11cA. M. Hafez, A. E. Taggi, H. Wack, J. Esterbrook, T. Lectka, Org. Lett. 2001, 3, 2049–2051;
- 11dS. France, H. Wack, A. E. Taggi, A. M. Hafez, T. R. Wagerle, M. H. Shah, C. L. Dusich, T. Lectka, J. Am. Chem. Soc. 2004, 126, 4245–4255.
- 12
- 12aM. P. Brochu, S. P. Brown, D. W. C. MacMillan, J. Am. Chem. Soc. 2004, 126, 4108–4109.
- 13N. Halland, A. Braunton, S. Bachmann, M. Marigo, K. A. Jørgensen, J. Am. Chem. Soc. 2004, 126, 4790–4791.
- 14M. Marigo, S. Bachmann, N. Halland, A. Braunton, K. A. Jørgensen, Angew. Chem. 2004, 116, 5623–5626;
10.1002/ange.200460462 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 5507–5510.
- 15For acid-promoted aldol reactions via enamine intermediates, see: N. Mase, F. Tanaka, C. F. Barbas III, Angew. Chem. 2004, 116, 2474–2477;
10.1002/ange.200353546 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 2420–2423.
- 16Y. Zhang, K. Shibatomi, H. Yamamoto, J. Am. Chem. Soc. 2004, 126, 15 038–15 039.