Electrochemical Addressing of the Optical Properties of a Monolayer on a Transparent Conducting Substrate†
Atindra D. Shukla Dr.
Department of Organic Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel, Fax: (+972) 8-934-4142
Search for more papers by this authorAmitava Das Dr.
Central Salt and Marine Chemicals Research Institute, Gujarat, India
Search for more papers by this authorMilko E. van der Boom Dr.
Department of Organic Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel, Fax: (+972) 8-934-4142
Search for more papers by this authorAtindra D. Shukla Dr.
Department of Organic Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel, Fax: (+972) 8-934-4142
Search for more papers by this authorAmitava Das Dr.
Central Salt and Marine Chemicals Research Institute, Gujarat, India
Search for more papers by this authorMilko E. van der Boom Dr.
Department of Organic Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel, Fax: (+972) 8-934-4142
Search for more papers by this authorThis research was supported by the Helen and Martin Kimmel Center for Molecular Design, the Yigal-Alon Fellowship program, MINERVA, the German BMBF, and the MJRG for Molecular Materials and Interface Design (M.E.v.d.B). A.D. thanks DST (India) for financial assistance. A.D.S. is the recipient of the Reva G. Stone Postdoctoral Fellowship. We thank M. Altman and H. Cohen (WIS) for the AFM and XPS measurements, respectively. M.E.v.d.B. is the incumbent of the Dewey David Stone and Harry Levine career development chair.
Graphical Abstract
Don't forget to write! Electrochemical charge storage in a ruthenium-based monolayer on a hydrophilic substrate (for example, indium tin oxide coated glass) produces redox switching of the optical properties of the system (see picture). This read/write process can be carried out at low voltage in air and monitored by UV/Vis spectrophotometry. This makes the monolayer system a suitable candidate for nonvolatile memory devices.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2005/z461958_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Nitzan, M. A. Ratner, Science 2003, 300, 1384;
- 1bA. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V. B. Engelkes, C. D. Frisbie, Adv. Mater. 2003, 15, 1883;
- 1cM. E. van der Boom, Angew. Chem. 2002, 114, 3511;
10.1002/1521-3757(20020916)114:18<3511::AID-ANGE3511>3.0.CO;2-0 Google ScholarAngew. Chem. Int. Ed. 2002, 41, 3363.10.1002/1521-3773(20020916)41:18<3363::AID-ANIE3363>3.0.CO;2-V CAS PubMed Web of Science® Google Scholar
- 2For examples of functional mono- and multilayers, see:
- 2aP. Zhu, H. Kang, A. Facchetti, G. Evmenenko, P. Dutta, T. J. Marks, J. Am. Chem. Soc. 2003, 125, 11 496;
- 2bT. van der Boom, G. Evmenenko, P. Dutta, M. R. Wasielewski, Chem. Mater. 2003, 15, 4068;
- 2cA. Facchetti, A. Abbotto, L. Beverina, M. E. van der Boom, P. Dutta, G. Evmenenko, T. J. Marks, G. A. Pagani, Chem. Mater. 2002, 14, 4996;
- 2dG. A. Neff, M. R. Helfrich, M. C. Clifton, C. J. Page, Chem. Mater. 2000, 12, 2363;
- 2eM. S. Johal, Y. W. Cao, X. D. Chai, L. B. Smilowitz, J. M. Robinson, T. J. Li, D. McBranch, D.-Q. Li, Chem. Mater. 1999, 11, 1962;
- 2fV. Burtman, A. Zelichenok, S. Yitzchaik, Angew. Chem. 1999, 111, 2078;
10.1002/(SICI)1521-3757(19990712)111:13/14<2078::AID-ANGE2078>3.0.CO;2-D Google ScholarAngew. Chem. Int. Ed. 1999, 38, 2041;10.1002/(SICI)1521-3773(19990712)38:13/14<2041::AID-ANIE2041>3.0.CO;2-H Web of Science® Google Scholar
- 2gA. Ulman, Chem. Rev. 1996, 96, 1533;
- 2hH. E. Katz, W. L. Wilson, G. Scheller, J. Am. Chem. Soc. 1994, 116, 6636.
- 3Q. Li, G. Mathur, M. Homsi, S. Surthi, V. Misra, V. Malinovskii, K.-H. Schweikart, L. Yu, J. S. Lindsey, Z. Liu, R. B. Dabke, A. Yasseri, D. F. Bocian, W. G. Kuhr, Appl. Phys. Lett. 2002, 81, 1495.
- 4
- 4aZ. Liu, A. A. Yasseri, J. S. Lindsey, D. F. Bocian, Science 2003, 302, 1543;
- 4bR. L. Carroll, C. B. Gorman, Angew. Chem. 2002, 114, 4556;
10.1002/1521-3757(20021202)114:23<4556::AID-ANGE4556>3.0.CO;2-W Google ScholarAngew. Chem. Int. Ed. 2002, 41, 4378.10.1002/1521-3773(20021202)41:23<4378::AID-ANIE4378>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 5
- 5aA. P. de Silva, D. B. Fox, T. S. Moody, S. M. Weir, Trends Biotechnol. 2001, 19, 27;
- 5b Molecular Switches (Ed.: ), Wiley-VCH, Weinheim, 2001;
- 5cI. Willner, E. Katz, Angew. Chem. 2000, 112, 1230;
Angew. Chem. Int. Ed. 2000, 39, 1180;
10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 5dspecial issue on “Photochromism: Memories and Switches”: Chem. Rev. 2000, 100, 1683;
- 5eB. J. Coe, Chem. Eur. J. 1999, 5, 2464.
10.1002/(SICI)1521-3765(19990903)5:9<2464::AID-CHEM2464>3.0.CO;2-L CAS Web of Science® Google Scholar
- 6For an electrochemically driven metal-based switch in solution, see: D. Kalny, M. Elhabiri, T. Moav, A. Vaskevich, I. Rubinstein, A. Shanzer, A.-M. Albrecht-Gary, Chem. Commun. 2002, 1426.
- 7
- 7aG. Fabbrini, E. Menna, M. Maggini, A. Canazza, G. Marcolongo, M. Meneghetti, J. Am. Chem. Soc. 2004, 126, 6239;
- 7bJ. T. M. Kennis, I. H. M. van Stokkum, S. Crosson, M. Gauden, K. Moffat, R. van Grondelle, J. Am. Chem. Soc. 2004, 126, 4512;
- 7cM. P. Debreczeny, W. A. Svec, M. R. Wasielewski, Science 1996, 274, 584;
- 7dL. Zelikovich, J. Libman, A. Shanzer, Nature 1995, 374, 790.
- 8
- 8aS. Yasutomi, T. Morita, Y. Imanishi, S. Kimura, Science 2004, 304, 1944;
- 8bM. J. Cook, A.-M. Nygård, Z. Wang, D. A. Russell, Chem. Commun. 2002, 10, 1056;
- 8cC. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath, Science 2000, 289, 1172.
- 9For chemical switching of the optical properties of a thiol-based monolayer on ultrathin Pt electrodes, see: S. Sortino, S. Petralia, S. Conoci, S. Di Bella, J. Am. Chem. Soc. 2004, 126, 1122.
- 10The use of optical spectroscopy to measure the redox state of noncovalently bound organic films on transparent electrodes is known; however, to the best of our knowledge only very few studies have been reported on thiol-based monolayers.[9] For examples of spectroelectrochemistry on noncovalently bound (adsorbed) organic films, see:
- 10aD. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, Anal. Chem. 1997, 69, 3086;
- 10bS. C. Paulson, C. M. Elliot, Anal. Chem. 1996, 68, 1711;
- 10cJ. W. Perry, A. J. McQuillan, F. C. Anson, A. H. Zewail, J. Phys. Chem. 1983, 87, 1480;
- 10dfor an example of spectroelectrochemistry on a multilayer based on electrostatic interactions, see: Z. Guo, Y. Shen, M. Wang, F. Zhao, S. Dong, Anal. Chem. 2004, 76, 184.
- 11J. Lahann, S. Mitragotri, T.-N. Tran, H. Kaido, J. Sundaram, I. S. Choi, S. Hoffer, G. A. Somorjai, R. Langer, Science 2003, 299, 371.
- 12A. J. Amoroso, A. Das, J. A. McCleverty, M. D. Ward, F. Barigelletti, L. Flamigni, Inorg. Chim. Acta 1994, 226, 171.
- 13
- 13aR. Yerushalmi, A. Scherz, M. E. van der Boom, J. Am. Chem. Soc. 2004, 126, 2700;
- 13bA. Gulino, P. Mineo, E. Scamporrino, D. Vitalini, I. Fragala, Chem. Mater. 2004, 16, 1838;
- 13cW. J. Dressick, M. S. Chen, S. L. Brandow, J. Am. Chem. Soc. 2000, 122, 982;
- 13dD.-Q. Li, B. I. Swanson, J. M. Robinson, M. A. Hoffbauer, J. Am. Chem. Soc. 1993, 115, 6975.
- 14Monolayer characterization will be reported in a full paper; for details of the XPS and AFM instrumentation and analysis procedures, see: A. D. Shukla, D. Strawser, A. C. B. Lucassen, D. Freeman, H. Cohen, D. A. Jose, A. Das, G. Evmenenko, P. Dutta, M. E. van der Boom, J. Phys. Chem. B 2004, 8, 17 505.
- 15W. Lin, W. Lin, G. K. Wong, T. J. Marks, J. Am. Chem. Soc. 1996, 118, 8034.
- 16 Electrochemical Methods: Fundamentals and Applications, 2nd ed. , ), Wiley, New York, 2001.