Gas-Phase Catalysis by Atomic and Cluster Metal Ions: The Ultimate Single-Site Catalysts
Diethard K. Böhme Prof.
Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada, Fax: (+1) 416-736-5936
Search for more papers by this authorHelmut Schwarz Prof. Dr.
Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany, Fax: (+49) 30-314-21102
Search for more papers by this authorDiethard K. Böhme Prof.
Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada, Fax: (+1) 416-736-5936
Search for more papers by this authorHelmut Schwarz Prof. Dr.
Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany, Fax: (+49) 30-314-21102
Search for more papers by this authorGraphical Abstract
Not just hot air: Complete catalytic cycles under strictly thermal conditions can be studied by means of modern mass spectrometry, and the underlying elementary processes have been uncovered (see picture for the Fe+-mediated oxidation of methane by molecular oxygen, with methanol as a catalytic co-reductant). Examples cover aspects of catalysis pertinent to areas as diverse as atmospheric chemistry and surface chemistry.
Abstract
Gas-phase experiments with state-of-the-art techniques of mass spectrometry provide detailed insights into numerous elementary processes. The focus of this Review is on elementary reactions of ions that achieve complete catalytic cycles under thermal conditions. The examples chosen cover aspects of catalysis pertinent to areas as diverse as atmospheric chemistry and surface chemistry. We describe how transfer of oxygen atoms, bond activation, and coupling of fragments can be mediated by atomic or cluster metal ions. In some cases truly unexpected analogies of the idealized gas-phase ion catalysis can be drawn with related chemical transformations in solution or the solid state, and so improve our understanding of the intrinsic operation of a practical catalyst at a strictly molecular level.
References
- 1E. Fischer, Stahl Eisen 1912, 32, 1898.
- 2D. F. Shriver, P. W. Atkins, C. H. Langford, Inorganic Chemistry, Oxford University Press, Oxford, 1994, chap. 17.
- 3 Opportunities in Chemistry, National Academy Press, Washington, DC, 1985.
- 4
- 4aG. A. Olah, A. Molnar, Hydrocarbon Chemistry, Wiley, New York, 1995;
- 4bA. E. Shilov, G. B. Shul'pin, Chem. Rev. 1997, 97, 2879;
- 4cA. Sen, Acc. Chem. Res. 1998, 31, 550;
- 4dW. D. Jones, Science 2000, 287, 1942;
- 4eJ. R. Rostrup-Nielsen, Catal. Today 2000, 63, 159;
- 4fJ. H. Lunsford, Catal. Today 2000, 63, 165;
- 4gR. H. Crabtree, J. Chem. Soc. Dalton Trans. 2001, 2437;
- 4hA. A. Fokin, P. R. Schreiner, Chem. Rev. 2002, 102, 1551;
- 4iJ. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507;
- 4jU. Fekl, K. I. Goldberg, Adv. Inorg. Chem. 2003, 54, 259;
- 4kC. J. Jones, D. Taube, V. R. Ziatdinov, R. A. Periana, R. J. Nielsen, J. Oxgaard, W. A. Goddard III, Angew. Chem. 2004, 116, 4726; Angew. Chem. Int. Ed. 2004, 43, 4626, and references therein;
- 4lD. Milstein, Pure Appl. Chem. 2003, 75, 445;
- 4mM. E. Van der Boom, D. Milstein, Chem. Rev. 2003, 103, 1759;
- 4nU. Fekl, K. I. Goldberg, Adv. Inorg. Chem. 2003, 54, 2590.
- 5For recent reviews, see:
- 5aD. Schröder, H. Schwarz, Angew. Chem. 1995, 107, 2126; Angew. Chem. Int. Ed. Engl. 1995, 34, 1973;
- 5bH. Schwarz, D. Schröder, Pure Appl. Chem. 2000, 72, 2319;
- 5cD. A. Plattner, Int. J. Mass Spectrom. 2001, 207, 125;
- 5dK. M. Ervin, Int. Rev. Phys. Chem. 2001, 20, 127;
- 5eK. A. Zemski, D. R. Jurtes, A. W. Castleman, Jr., J. Phys. Chem. B 2002, 106, 6136;
- 5fU. Mazurek, H. Schwarz, J. Chem. Soc. Chem. Commun. 2003, 1321;
- 5gH. Schwarz, Angew. Chem. 2003, 115, 4580;
10.1002/ange.200300572 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 4442;
- 5hR. A. J. O'Hair, G. N. Khairallah, J. Cluster Sci. 2004, 15, 331;
- 5iT. Waters, R. A. J. O'Hair, Encylopedia of Mass Spectrometry, (Ed.: ), Vol. 4, Elsevier, New York, 2005, 604;
- 5jP. Chen, Angew. Chem, 2003, 115, 2938; Angew. Chem. Int. Ed. 2003, 42, 2832.
- 6
- 6a Gaseous Ion Chemistry and Mass Spectrometry (Ed.: ), Wiley, New York, 1986;
- 6bK. Eller, H. Schwarz, Chem. Rev. 1991, 91, 1121;
- 6c“Modern Mass Spectrometry”: Top. Curr. Chem. 2003, 225, Springer, Berlin, 2003;
- 6dJ. H. Gross, Mass Spectrometry, Springer, Berlin, 2004.
- 7For a selection of leading references, see:
- 7aG. Ertl in Elementary Steps in Ammonia Synthesis. The Surface Science Approach (Ed.: ), Plenum, New. York, 1991, p. 109;
- 7bJ. M. Thomas, R. Schlögl, Angew. Chem. 1994, 106, 316; Angew. Chem. Int. Ed. Engl. 1994, 33, 308;
- 7c Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, 2 (Eds.: ), VCH, Weinheim, 1996;
- 7dJ. M. Thomas, Chem. Eur. J. 1997, 3, 1557;
- 7eG. Ertl, H. J. Freund, Phys. Today 1999, 52, 32;
- 7fG. A. Somorjai, K. McKrea, Appl. Catal. A 2001, 222, 3;
- 7gR. Noyori, T. Ohkuma, Angew. Chem. 2001, 113, 40;
10.1002/1521-3757(20010105)113:1<40::AID-ANGE40>3.0.CO;2-K Google ScholarAngew. Chem. Int. Ed. 2001, 40, 41;
- 7hT. M. Tonka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18;
- 7iG. Ertl, J. Mol. Catal. A 2002, 182/ 183, 5;
- 7jA. T. Bell, Science 2003, 299, 1688;
- 7kR. Schlögl, S. B. A. Hamid, Angew. Chem. 2004, 116, 1656;
10.1002/ange.200301684 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 1628;
- 7lX. Zhang, X. Chen, P. Chen, Organometallics 2004, 23, 3437;
- 7mS. S. Stahl, Angew. Chem. 2004, 116, 3480;
10.1002/ange.200300630 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 3400;
- 7nA. Ajamian, J. L. Gleason, Angew. Chem. 2004, 116, 3842;
10.1002/ange.200301727 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 3754; for reviews with an emphasis on heterogeneous catalysis on the atomic scale, see:
- 7oM. Boudart, Catal. Lett. 2000, 65, 1;
- 7pG. Ertl, Chem. Rec. 2000, 33;
- 7qG. Ertl, J. Mol. Catal. A 2002, 182/183, 5;
- 7rJ. M. Thomas, C. R. A. Catlow, G. Sankar, Chem. Commun. 2002, 2921;
- 7sB. de Bruin, P. H. M. Budzelaar, A. G. Wal, Angew. Chem. 2004, 116, 4236; Angew. Chem. Int. Ed. 2004, 43, 4142;
- 7tC. Copéret, M. Chabanas, R. P. Saint-Arromant, J.-M. Basset, Angew. Chem. 2003, 115, 164;
10.1002/ange.200390040 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 156;
- 7uC. Hahn, Chem. Eur. J. 2004, 10, 5888;
- 7vK. Reuter, D. Frenkel, M. Scheffler, Phys. Rev. Lett. 2004, 93, 116105-1;
- 7wG. W. Coates, D. R. Moore, Angew. Chem. 2004, 116, 6784;
10.1002/ange.200460442 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 6618.
- 8
- 8a Collision Spectroscopy (Ed.: ), Plenum Press, New York, 1978;
- 8bK. L. Busch, G. L. Glish, S. A. McLuckey, Mass Spectrometry/Mass Spectrometry: Techniques and Applications of Tandem Mass Spectrometry, VCH, Weinheim, 1988.
- 9V. Blagojevic, G. Orlova, D. K. Bohme, J. Am. Chem. Soc. 2005, 127, 3345.
- 10
- 10aG. Bouchoux, J.-Y. Salpin, D. Leblanc, Int. J. Mass Spectrom. Ion Processes 1996, 153, 37;
- 10bG. Bouchoux, J.-Y. Salpin, J. Phys. Chem. 1996, 100, 16 555;
- 10cM. Moomann, S. Bashir, P. J. Derrick, D. Kuck, J. Am. Soc. Mass Spectrom. 2000, 11, 544;
- 10dG. Bouchoux, D. Leblanc, M. Sabbier, Int. J. Mass Spectrom. 2001, 210/ 211, 189.
- 11E. E. Ferguson, F. C. Fehsenfeld, J. Geophys. Res. 1968, 73, 6215.
- 12F. Kaufman, Defense Nuclear Agency Reaction Rate Handbook, DASIAC, General Electric, TEMPO, Santa Barbara, CA, 1972, chap. 19.
- 13
- 13a Ion Molecule Reactions: Kinetics and Dynamics (Ed.: ), Dowden, Hutchinson and Ross, Strondsburg, PA, 1979;
- 13b Gas Phase Ion Chemistry, Vol. 1–3 (Ed.: ), Academic Press, New York, 1979;
- 13c Techniques for the Study of Ion-Molecule Reactions (Eds.: ), Wiley, New York, 1988;
- 13dR. Zahradnik, Acc. Chem. Res. 1995, 28, 306.
- 14J. M. C. Plane, Chem. Rev. 2003, 103, 4963, and references therein.
- 15
- 15aV. I. Parvulescu, P. Grange, B. Oelmon, Catal. Today 1998, 46, 233, and references therein;
- 15bR. Burch, J. P. Breen, C. F. Meunier, Appl. Catal. B 2002, 39, 283;
- 15cfor a recent review on biological reduction of N2O, see: P. Chen, S. I. Gorelsky, S. Ghosh, E. I. Solomon, Angew. Chem. 2004, 116, 4224; Angew. Chem. Int. Ed. 2004, 43, 4132;
- 15dfor an ab initio analysis of catalytic NO reduction, see: Z.-P. Liu, S. J. Denkins, D. A. King, J. Am. Chem. Soc. 2004, 126, 10 746;
- 15efor first principles calculations on the oxidation of alkali metal atoms with N2O, see: O. Tishchenko, C. Vinckier, M. T. Nguyen, J. Phys. Chem. A 2004, 108, 1268.
- 16M. M. Kappes, R. H. Staley, J. Am. Chem. Soc. 1981, 103, 1286.
- 17V. Baranov, G. Javahery, A. C. Hopkinson, D. K. Bohme, J. Am. Chem. Soc. 1995, 117, 12 801.
- 18For a theoretical study of the dissociation of N2O in reactions catalyzed by transition-metal ions, see: A. Martinez, A. Goursot, R. Castañeda, A. Corma, J. Phys. Chem. B 2004, 108, 8823.
- 19M. Brönstrup, D. Schröder, I. Kretzschmar, H. Schwarz, J. N. Harvey, J. Am. Chem. Soc. 2001, 123, 142.
- 20V. Blagojevic, M. J. Y. Jarvis, E. Flaim, G. K. Koyanagi, V. V. Lavrov, D. K. Bohme, Angew. Chem. 2003, 115, 5073;
10.1002/ange.200351628 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 4923.
- 21
- 21aG. K. Koyanagi, V. V. Lavrov, V. I. Baranov, D. Bandura, S. D. Tanner, J. W. McLaren, D. K. Bohme, Int. J. Mass Spectrom. 2000, 194, L1;
- 21bG. K. Koyanagi, V. I. Baranov, S. T. Tanner, D. K. Bohme, J. Anal. At. Spectrom. 2000, 15, 1207.
- 22
- 22aV. V. Lavrov, V. Blagojevic, G. K. Koyanagi, G. Orlova, D. K. Bohme, J. Phys. Chem. A 2004, 108, 5610;
- 22bG. K. Koyanagi, D. K. Bohme, J. Phys. Chem. A 2001, 105, 8964.
- 23T. Su, W. J. Chesnawich, J. Chem. Phys. 1982, 76, 5183.
- 24I. Kretzschmar, A. Fiedler, J. N. Harvey, D. Schröder, H. Schwarz, J. Phys. Chem. A 1997, 101, 6252.
- 25For a recent exhaustive review on the topic of “spin-forbiddeness” in ion-molecule reactions, see: H. Schwarz, Int. J. Mass Spectrom. 2004, 237, 75.
- 26
- 26aD. E. Clemmer, Y.-M. Chen, F. A. Khan, P. B. Armentrout, J. Phys. Chem. 1994, 98, 6522;
- 26bD. Schröder, A. Fiedler, M. F. Ryan, H. Schwarz, J. Phys. Chem. 1994, 98, 68;
- 26cA. Fiedler, D. Schröder, S. Shaik, H. Schwarz, J. Am. Chem. Soc. 1994, 116, 19 734;
- 26dS. Shaik, D. Danovich, A. Fiedler, D. Schröder, H. Schwarz, Helv. Chim. Acta 1995, 78, 1393;
- 26eD. Schröder, H. Schwarz, D. E. Clemmer, Y. Chen, P. B. Armentrout, V. I. Baranov, D. K. Bohme, Int. J. Mass Spectrom. Ion Processes 1997, 161, 175;
- 26fD. Danovich, S. Shaik, J. Am. Chem. Soc. 1997, 119, 1773;
- 26gM. Filatov, S. Shaik, J. Phys. Chem. A 1998, 102, 3835.
- 27
- 27aR. Poli, J. N. Harvey, Chem. Soc. Rev. 2003, 32, 1;
- 27bR. Poli, J. Organomet. Chem. 2004, 689, 4291.
- 28For a review, see: D. Schröder, S. Shaik, H. Schwarz, Acc. Chem. Res. 2000, 33, 139.
- 29A. Fiedler, J. Hrušák, W. Koch, H. Schwarz, Chem. Phys. Lett. 1993, 211, 242.
- 30
- 30aD. Schröder, H. Schwarz, S. Shaik, Struct. Bonding (Berlin) 2000, 97, 91;
- 30bfor reviews on metal-mediated oxygen-atom transfer catalysis in solution, see: Catalytic Asymmetric Synthesis, 2nd ed. ), Wiley-VCH, New York, 2000;
10.1002/0471721506 Google Scholar
- 30c Oxygenases and Model Systems (Ed.: ), Kluwer, Boston, 1997;
- 30d Comprehensive Organometallic Chemistry II, Vol. 12 (Eds.: ), Pergamon, New York, 1995.
- 31D. Schröder, H. Schwarz, Angew. Chem. 1990, 102, 1468; Angew. Chem. Int. Ed. Engl. 1990, 29, 1433.
- 32T. C. Jackson, D. B. Jacobson, B. S. Freiser, J. Am. Chem. Soc. 1984, 106, 1252.
- 33H. Kang, J. L. Beauchamp, J. Am. Chem. Soc. 1986, 108, 5663.
- 34
- 34aA. E. Stevens, J. L. Beauchamp, J. Am. Chem. Soc. 1971, 93, 6449;
- 34bP. B. Armentrout, J. L. Beauchamp, J. Chem. Phys. 1981, 74, 2819;
- 34cR. Georgiadis, P. B. Armentrout, Int. J. Mass Spectrom. Ion Processes 1989, 89, 227;
- 34dS. K. Loh, E. R. Fisher, L. Lian, R. H. Schultz, P. B. Armentrout, J. Phys. Chem. 1989, 93, 3159;
- 34eE. R. Fisher, P. B. Armentrout, J. Phys. Chem. 1990, 94, 1674.
- 35D. Schröder, H. Schwarz, Angew. Chem. 1990, 102, 1466; Angew. Chem. Int. Ed. Engl. 1990, 29, 1431.
- 36K. K. Irikura, J. L. Beauchamp, J. Am. Chem. Soc. 1989, 111, 75.
- 37N. Ktiajsma, M. Ito, H. Fukui, Y. Moro-Oka, J. Chem. Soc. Chem. Commun. 1991, 102, and references therein.
- 38M. F. Ryan, D. Stöckigt, H. Schwarz, J. Am. Chem. Soc. 1994, 116, 9565.
- 39Y. Shiota, K. Yoshizawa, J. Chem. Phys. 2003, 118, 5872, and references therein.
- 40At thermal energies the reverse reaction Fe(OH)+ + CH3→FeO+ + CH4 takes place instead: O. Blum, D. Stöckigt, D. Schröder, H. Schwarz, Angew. Chem. 1992, 104, 637; Angew. Chem. Int. Ed. Engl. 1992, 31, 603.
- 41
- 41aS. T. Ceyer, Science 1990, 249, 133;
- 41bJ. C. Mackie, Catal. Rev. Sci. Eng. 1991, 33, 169;
- 41cH. Schwarz, Angew. Chem. 1991, 103, 837; Angew. Chem. Int. Ed. Engl. 1991, 30, 820;
- 41dJ. Kiwi, K. R. Thampi, M. Grätzel, P. Albers, K. Seibold, J. Phys. Chem. 1992, 96, 1344;
- 41eZ. Zhang, X. E. Verykios, M. Baerns, Catal. Rev. Sci. Eng. 1993, 35, 169.
- 42D. Schröder, R. Wesendrup, C. A. Schalley, W. Zummack, H. Schwarz, Helv. Chim. Acta 1996, 79, 123.
- 43D. Schröder, H. Schwarz in Essays in Contemporary Chemistry: From Molecular Structure towards Biology (Eds.: ), Verlag Helvetica Chimica Acta, Zürich, 2001, p. 131.
10.1002/9783906390451.ch4 Google Scholar
- 44For enhancement effects of added methanol on selective CH4 oxidations, see: Y. Teng, Y. Yamaguchi, T. Takemoto, K. Tabata, E. Suzuki, Phys. Chem. Chem. Phys. 2000, 2, 3429.
- 45
- 45a Organometallic Ion Chemistry (Ed.: ), Kluwer, Dordrecht, 1996, p. 283;
- 45bS. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, W. G. Mallard, J. Phys. Chem. Ref. Data Suppl. 1 1988, 17.
- 46A. Fiedler, D. Schröder, H. Schwarz, B. L. Tjelta, P. B. Armentrout, J. Am. Chem. Soc. 1996, 118, 5047.
- 47I. Kretzschmar, D. Schröder, H. Schwarz, unpublished results.
- 48D. Stöckigt, H. Schwarz, Liebigs Ann. 1995, 429.
- 49D. Schröder, M. C. Holthausen, H. Schwarz, J. Phys. Chem. B 2004, 108, 14 407.
- 50X.-G. Zhang, P. B. Armentrout, J. Phys. Chem. A 2003, 107, 8904.
- 51X.-G. Zhang, P. B. Armentrout, J. Phys. Chem. A 2003, 107, 8915.
- 52B. R. Rowe, A. A. Viggiano, F. C. Fehsenfeld, D. W. Fakey, E. E. Ferguson, J. Chem. Phys. 1982, 76, 742.
- 53The fundamental aspects associated with the activation of molecular oxygen as well as the “stoichiometry problem” will not be addressed in detail here. For general introductions, see ref. [54], and for some examples pertinent to the content of the present review, see refs. [11, 30, 43, 50, 51, 55].
- 54aE. F. Elstner, Der Sauerstoff, Wissenschaftsverlag, Mannheim, 1990;
- 54bD. T. Sawyer, Oxygen Chemistry, Oxford University Press, New York, 1991.
- 55
- 55aR. Johnson, F. R. Castell, M. A. Biondi, J. Chem. Phys. 1974, 61, 5404;
- 55bM. M. Kappes, R. H. Staley, J. Phys. Chem. 1981, 85, 942;
- 55cS. Dheandhanoo, B. K. Chatterjee, R. Johnson, J. Chem. Phys. 1985, 83, 3327;
- 55dE. R. Fisher, J. L. Elkind, D. E. Clemmer, R. Georgiadis, S. K. Loh, N. Aristov, L. S. Sunderlin, P. B. Armentrout, J. Chem. Phys. 1990, 93, 942;
- 55eA. Fiedler, I. Kretzschmar, D. Schröder, H. Schwarz, J. Am. Chem. Soc. 1996, 118, 9941;
- 55fR. J. Rollason, J. M. C. Plane, J. Chem. Soc. Faraday Trans. 1998, 94, 3067;
- 55gM. K. Beyer, C. B. Berg, U. Achatz, S. Joos, G. Niedner-Schatteburg, V. E. Bondybey, Mol. Phys. 2001, 99, 699;
- 55hG. K. Koyanagi, D. Caraiman, V. Blagojevic, D. K. Bohme, J. Phys. Chem. A 2002, 106, 4581.
- 56We note in passing that it is this very feature that has caused some interest in the role of metal-ion interactions with benzene in interstellar chemistry, in which benzene can contribute to the depletion of atomic ions and can act as a platform for catalytic gas-phase chemistry. For leading references, see ref. [57]. For a recent computational study on various aspects of the M+/C6H6 interactions, see: ref. [58], and for a review on the role of π interactions with metal cations in biological systems, see: ref. [59].
- 57
- 57aD. K. Bohme, Chem. Rev. 1992, 92, 1487;
- 57bP. Boissel, Astron. Astrophys. 1994, 285, L33;
- 57cF. Pirani, D. Coppelletti, M. Bartolomei, V. Aquilanti, M. Scotoni, M. Vescovi, D. Ascenzi, D, Bassi, Phys. Rev. Lett. 2001, 86, 5035.
- 58M. Diefenbach, H. Schwarz, Encycl. Comput. Chem. 2004, DOI: 10.1002/0470845015.cn0091 (Aug 15, 2004)..
- 59
- 59aD. A. Dougherty, Science, 1996, 271, 163;
- 59bJ. C. Ma, D. A. Dougherty, Chem. Rev. 1997, 97, 1303.
- 60S. Mallier-Soulier, V. Ducrocq, N. Truffant, Can. J. Microbiol. 1999, 45, 898.
- 61For a superb discussion on the intricacies in the oxidation of hydrogen on Pt(111), see:
- 61aS. Völkening, K. Bedürftig, K. Jacobi, J. Wintterlin, G. Ertl, Phys. Rev. Lett. 1999, 83, 2672;
- 61bC. Sachs, M. Hildebrand, S. Völkening, J. Wintterlin, G. Ertl, Science 2001, 293, 1635;
- 61cC. Sachs, M. Hildebrand, S. Völkening, J. Wintterlin, G. Ertl, J. Chem. Phys. 2002, 116, 5759, and references therein;
- 61dthe discovery of the platinum-catalyzed oxidation of hydrogen in 1823 by Döbereiner (J. W. Döbereiner, Schweigg. J. 1823, 39, 1) prompted Berzelius to coin the term “catalysis” ( J. J. Berzelius, Iber. Chem. 1837, 15, 237). For a historical account, entitled “Katalyse: Vom Stein der Weisen zu Wilhelm Ostwald”, see: G. Ertl, T. Gloyna, Z. Phys. Chem. 2003, 217, 1207;
- 61ethe catalytic oxidation of hydrogen on free neutral platinum clusters has been reported by: M. Andersson, A. Rosén, J. Chem. Phys. 2002, 117, 7051.
- 62
- 62aK. P. C. Vollhardt, Angew. Chem. 1984, 96, 525; Angew. Chem. Int. Ed. Engl. 1984, 23, 539;
- 62bN. E. Shore, Chem. Rev. 1988, 88, 1081;
- 62cM. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49;
- 62dI. Ojima, M. Tzamaviondaki, Z. Li, R. J. Donovan, Chem. Rev. 1996, 96, 635;
- 62efor a discussion of electron-transfer catalysis using transition-metal complexes, see: S. Hintz, A. Heidbreider, J. Mattay, Top. Curr. Chem. 1996, 177, 78;
- 62fa survey as well as a detailed computational analysis of the noncatalyzed trimerization of, for example, 3 C2H2→C6H6, can be found in: R. D. Bach, G. J. Wolber, H. B. Schlegel, J. Am. Chem. Soc. 1985, 107, 2837; g) for a recent example for C2H2 trimerization on single Ag, Rh, and Pd atoms supported on the MgO(001) surface, see: A. S. Wörz, K. Judai, S. Abbet, J.-M. Antonietti, U. Heiz, A. DelVitto, L. Giordano, G. Pacchioni, Chem. Phys. Lett. 2004, 399, 266;
- 62gfor ethylene polymerization mediated by oxygenated chromium cluster ions and the relationship between gas-phase reactivities of isolated clusters versus solid-state behavior, see: T. Hanmura, M. Ichihashi, T. Monoi, K. Matsuura, T. Kondow, J. Phys. Chem. A, 2004, 108, 10 434.
- 63
- 63aS. W. Buckner, T. J. MacMahon, G. D. Byrd, B. S. Freiser, Inorg. Chem. 1989, 28, 3511;
- 63bR. Bakhtiar, J. J. Drader, D. B. Jacobson, J. Am. Chem. Soc. 1992 114, 8304.
- 64R. Wesendrup, H. Schwarz, Organometallics 1997, 16, 461
- 65C. Berg, S. Kaiser, T. Schindler, C. Kronseder, G. Niedner-Schatteburg, V. E. Bondybey, Chem. Phys. Lett. 1994, 231, 139.
- 66C. Heinemann, H. H. Cornehl, H. Schwarz, J. Organomet. Chem. 1995, 501, 201.
- 67
- 67aP. Schnabel, M. P. Irion, K. G. Weil, J. Phys. Chem. 1991, 95, 9688;
- 67bP. Schnabel, K. G. Weil, M. P. Irion, Angew. Chem. 1992, 104, 633; Angew. Chem. Int. Ed. Engl. 1992, 31, 636;
- 67cO. Gehret, M. P. Irion, Chem. Phys. Lett. 1996, 254, 379..
- 68
- 68aV. Ryzhov, R. C. Dunbar, J. Am. Chem. Soc. 1999, 121, 2259;
- 68bfor a recent review, see: L. Operti, R. Rabezzana, Mass Spectrom. Rev. 2003, 22, 407.
- 69aFor details of the gas-phase oligomerization of C2H2 mediated by atomic Fe+ see: D. Schröder, D. Sülzle, J. Hrušák, D. K. Bohme, H. Schwarz, Int. J. Mass Spectrom. Ion Processes 1991, 110, 145;
- 69bfor an infrared spectroscopic characterization of gaseous Ni(C2H2)n+ (n=3–6) complexes that provide evidence for intracluster cyclization reactions, see: R. S. Walters, T. D. Draeger, M. A. Duncan, J. Phys. Chem. A 2002, 106, 10 482;
- 69cM. A. Duncan, Int. Rev. Phys. Chem. 2003, 22, 407.
- 70R. Wesendrup, D. Schröder, H. Schwarz, Angew. Chem. 1994, 106, 1232; Angew. Chem. Int. Ed. Engl. 1994, 33, 1174.
- 71M. Pavlov, M. R. A. Blomberg, P. E. M. Siegbahn, R. Wesendrup, C. Heinemann, H. Schwarz, J. Phys. Chem. A 1997, 101, 1567, and references therein.
- 72M. Brönstrup, D. Schröder, H. Schwarz, Organometallics 1999, 18, 1939.
- 73S. W. Buckner, J. R. Gord, B. S. Freiser, J. Am. Chem. Soc. 1988, 110, 6606.
- 74
- 74aM. Brönstrup, I. Kretzschmar, D. Schröder, H. Schwarz, Helv. Chim. Acta 1998, 81, 2348;
- 74bR. Liyange, P. B. Armentrout, Int. J. Mass Spectrom. 2005, 241, 243.
- 75D. R. A. Ranatunga, Y. D. Hill, B. S. Freiser, Organometallics 1996, 15, 1242,
- 76
- 76aG. C. Bond, D. J. Thompson, Catal. Rev. Sci. Eng. 1999, 41, 319, and references therein;
- 76bfor the role of gold catalysts in organic synthesis, see: G. Dyker, Angew. Chem. 2000, 112, 4407;
10.1002/1521-3757(20001201)112:23<4407::AID-ANGE4407>3.0.CO;2-K Google ScholarAngew. Chem. Int. Ed. 2000, 39, 4237;10.1002/1521-3773(20001201)39:23<4237::AID-ANIE4237>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 76cA. S. K. Hashmi, Gold Bull. 2004, 37, 51.
- 77
- 77aM. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 1989, 115, 301;
- 77bM. Haruta, Catal. Today 1997, 36, 153;
- 77cM. Valden, X. Lai, D. W. Goodman, Science 1998, 281, 1647;
- 77dA. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett, U. Landman, J. Phys. Chem. A 1999, 103, 9573;
- 77eU. Heiz, A. Sanchez, S. Abbet, W.-D. Schneider, Eur. Phys. J. D 1999, 9, 35;
- 77fN. Lopez, J. K. Nørskov, J. Am. Chem. Soc. 2002, 124, 11 262;
- 77gM. S. Chen, D. W. Goodman, Science, 2004, 306, 252;
- 77hfor an essay on this topic, see: A. Cho, Science 2003, 299, 1684.
- 78For reviews, see:
- 78aD. M. P. Mingos, T. Slee, L. Zhenyang, Chem. Rev. 1990, 90, 383;
- 78bM. P. Irion, Int. J. Mass Spectrom. Ion Processes 1992, 121, 1;
- 78cM. B. Knickelbein, Annu. Rev. Phys. Chem. 1999, 50, 79;
- 78dJ. A. Alonso, Chem. Rev. 2000, 100, 637;
- 78eP. B. Armentrout, Annu. Rev. Phys. Chem. 2001, 52, 423;
- 78fV. E. Bondybey, M. K. Beyer, J. Phys. Chem. A 2001, 105, 951;
- 78gY. D. Kim, Int. J. Mass Spectrom. 2004, 238, 17;
- 78hT. M. Bernhardt, Int. J. Mass Spectrom., in press.
- 79
- 79aFor an exhaustive collection of experimental/theoretical studies on metal clusters in general, see: Metal Clusters in Chemistry (Eds.: ), Wiley, New York, 1999;
10.1002/9783527618316 Google Scholar
- 79bfor a recent survey that contains 794 references on the chemistry of gold, see: P. Pyykkö, Angew. Chem. 2004, 116, 4512;
10.1002/ange.200300624 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 4412.
- 80For a selection of more recent studies, see:
- 80aW. T. Wallace, R. L. Whetten, J. Phys. Chem. B 2000, 104, 10 964;
- 80bX. Wu, L. Senapati, S. K. Nayak, A. Selloni, M. Hajaligol, J. Chem. Phys. 2002, 117, 4010;
- 80cJ. Hagen, L. D. Socaciu, M. Elijazyfer, T. M. Bernhardt, L. Wöste, Phys. Chem. Chem. Phys. 2002, 4, 1707;
- 80dI. Balteanu, O. P. Balaj, B. S. Fox, M. K. Beyer, Z. Bastl, V. E. Bondybey, Phys. Chem. Chem. Phys. 2003, 5, 1213;
- 80eD. Stokic, M. Fischer, G. Ganteför, Y. D. Kim, Q. Sun, P. Jena, J. Am. Chem. Soc. 2003, 125, 2848;
- 80ffor the role of the charge of supported gold clusters in the low-temperature oxidation of CO, see: B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J.-M. Antonietti, S. Abbot, K. Judai, U. Heiz, Science 2005, 307, 403.
- 81Y. D. Kim, M. Fischer, G. Ganteför, Chem. Phys. Lett. 2003, 377, 170.
- 82aY. Shi, K. M. Ervin, J. Chem. Phys. 1998, 108, 1575;
- 82ba full catalytic cycle of CO oxidation with N2O on cationic platinum clusters for Ptn+ (n=5–10), including aspects of catalyst's poisoning by CO, has been reported recently: O. P. Bolaj, I. Balteanu, T. T. J. Roßteunscher, M. K. Beyer, V. E. Bondybey, Angew. Chem. 2004, 116, 6681;
10.1002/ange.200461215 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 6519;
- 82cfor the cluster-size-dependent reaction behavior of CO with O2 on free, negatively charged silver anions, see: L. D. Socacin, J. Hagen, J. LeRoux, D. Popolan, T. M. Bernhardt, L. Wöste, and S. Vajda, J. Chem. Phys. 2004, 120, 2078, and references therein;
- 82din contrast to Fe2O2+ which does not oxidize CO (O. Gehret, M. P. Irion, Chem. Eur. J. 1996, 2, 598; P. Jackson, J. N. Harvey, D. Schröder, H. Schwarz, Int. J. Mass Spectrom. 2001, 204, 233), Ni2O2+ brings about efficient oxidation of CO. Ni2O2+ can be conveniently generated by reaction of Ni2+ with N2O, and hence this is another example of cluster-mediated oxygen-atom transport catalysis in the N2O/CO system. For details, see: K. Koszinowski, M. Schlangen, D. Schröder, H. Schwarz, Eur. J. Inorg. Chem., in press.
- 83R. M. Heck, R. J. Farranto, Catalytic Air Pollution Control: Commercial Technology, Van Nortrand Reinhold, New York, 1995.
- 84
- 84aA. G. Sault, D. W. Goodman, Adv. Chem. Phys. 1989, 76, 153;
- 84bS. L. Bernasek, Heterogeneous Reaction Dynamics, VCH, New York, 1995.
- 85
- 85aH. Häkkinen, U. Landman, J. Am. Chem. Soc. 2001, 123, 9704;
- 85bW. T. Wallace, R. L. Whetten, J. Am. Chem. Soc. 2002, 124, 7499;
- 85cL. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, U. Landman, J. Am. Chem. Soc. 2003, 125, 10 437;
- 85dM. L. Kimble, A. W. Castleman, Jr.,R. Mitrić, C. Bürgel, V. Bonačic-Koutecký, J. Am. Chem. Soc. 2004, 126, 2526;
- 85eN. Lopez, J. K. Nørskov, J. Am. Chem. Soc. 2002, 124, 11 262.
- 86G. Centi, F. Cavani, F. Trifiro, Selective Oxidation by Heterogeneous Catalysis, Kluwer Academic/Plenum Publishers, New York, 2001.
10.1007/978-1-4615-4175-2 Google Scholar
- 87T. Waters, R. A. J. O'Hair, A. G. Wedd, J. Am. Chem. Soc. 2003, 125, 3384.
- 88W. E. Farneth, R. H. Staley, A. W. Sleight, J. Am. Chem. Soc. 1986, 108, 2327.
- 89B. Chiavarino, M. E. Crestoni, S. Fornarini, Chem. Eur. J. 2002, 8, 2740.
10.1002/1521-3765(20020617)8:12<2740::AID-CHEM2740>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 90aT. Waters, R. A. J. O'Hair, A. G. Wedd, Int. J. Mass Spectrom. 2003, 228, 599;
- 90bfor an example of a catalytic cycle for the gas-phase decarboxylation of acetic acid by organomagnesates, see: R. A. J. O'Hair, A. K. Vrkic, P. F. James, J. Am. Chem. Soc. 2004, 126, 12 173.
- 91M. A. Barteau, Chem. Rev. 1996, 96, 1413, and references therein.
- 92
- 92aH. S. Taylor, Proc. R. Soc. London A 1925, 108, 105;
- 92bG. M. Schwab, E. Pletsch, Z. Phys. Chem. 1929, 131, 385;
- 92cR. J. Davis, Science 2003, 301, 926;
- 92dQ. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 2003, 301, 935;
- 92eK. Horn, Science 2004, 305, 483.