Preparation of Ag2S Nanocrystals of Predictable Shape and Size†
Wen Pei Lim
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, Fax: (+65) 6779-1691
Search for more papers by this authorZhihua Zhang
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, Fax: (+65) 6779-1691
Search for more papers by this authorHong Yee Low Dr.
Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Singapore
Search for more papers by this authorWee Shong Chin Dr.
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, Fax: (+65) 6779-1691
Search for more papers by this authorWen Pei Lim
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, Fax: (+65) 6779-1691
Search for more papers by this authorZhihua Zhang
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, Fax: (+65) 6779-1691
Search for more papers by this authorHong Yee Low Dr.
Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Singapore
Search for more papers by this authorWee Shong Chin Dr.
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, Fax: (+65) 6779-1691
Search for more papers by this authorThis research work was supported by the National University of Singapore Academic Research Fund R-143-000-167-112. We thank Mr. Wong Chiong Teck for his assistance in the DFT calculations.
Graphical Abstract
In control! Ag2S nanocrystals of predictable size and shape were synthesized from the precursor Ag(SCOPh) in the presence of an amine. Careful tuning of several parameters, such as the reaction temperature and the ratio of amine to precursor, led to Ag2S nanocrystals of varying morphology (red: nanocubes; blue: faceted nanocrystals; yellow: nanorods) and size. x=particle size. HDA=hexadecylamine.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2004/z460566_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. L. Wang, J. Phys. Chem. B 2000, 104, 1153;
- 1bM. B. Mohamed, Z. L. Wang, M. A. El-Sayed, J. Phys. Chem. A 1999, 103, 10 255.
- 2K. Akamatsu, S. Takei, M. Mizuhata, A. Kajinami, S. Deki, S. Takeoka, M. Fujii, S. Hayashi, K. Yamamoto, Thin Solid Films 2000, 359, 55.
- 3Y. P. Sun, J. E. Riggs, H. W. Rollins, R. Guduru, J. Phys. Chem. B 1999, 103, 77.
- 4
- 4aG. Hodes, J. Manassen, D. Cahen, Nature 1976, 261, 403;
- 4bS. Kitova, J. Eneva, A. Panov, H. Haefke, J. Imaging Sci. Technol. 1994, 38, 484.
- 5
- 5aS. Hull, D. A. Keen, D. S. Sivia, P. A. Madden, M. Wilson, J. Phys. Condens. Matter 2002, 14, 9;
- 5bT. Minami, J. Non-Cryst. Solids 1987, 95, 107.
- 6J. Bao, D. Xu, Q. Zhou, Z. Xu, Chem. Mater. 2002, 14, 4709.
- 7J. C. Hulteen, C. R. Martin, J. Mater. Chem. 1997, 7, 1075.
- 8aW. Han, P. Kohler-Redlich, C. Scheu, F. Ernst, M. Rühle, N. Grobert, M. Terrones, H. W. Kroto, D. R. M. Walton, Adv. Mater. 2000, 12, 1356;
- 8bJ. Bao, K. Wang, Z. Xu, H. Zhang, Z. Lu, Chem. Commun. 2003, 2, 208.
- 9
- 9aJ. Tanori, M. P. Pileni, Langmuir 1997, 13, 639;
- 9bM. P. Pileni, T. Gulik-Krzywicki, J. Tanori, A. Filankembo, J. C. Dedieu, Langmuir 1998, 14, 7359.
- 10
- 10aV. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Science 2001, 291, 2115;
- 10bN. R. Jana, L. Gearheart, C. J. Murphy, Adv. Mater. 2001, 13, 1389;
- 10cB. Nikoobakht, M. A. El-Sayed, Chem. Mater. 2003, 15, 1957.
- 11aT. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Science 1996, 272, 1924;
- 11bJ. M. Petroski, Z. L. Wang, T. C. Green, M. A. El-Sayed, J. Phys. Chem. B 1998, 102, 3316;
- 11cY. Sun, Y. Xia, Science 2002, 298, 2176.
- 12K. K. Caswell, C. M. Bender, C. J. Murphy, Nano Lett. 2003, 3, 667.
- 13
- 13aC. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706;
- 13bB. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997, 101, 9463;
- 13cD. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Hasse, H. Weller, J. Phys. Chem. B 2001, 105, 2260;
- 13dJ. Hambrock, A. Birkner, R. A. Fischer, J. Mater. Chem. 2001, 11, 3197.
- 14V. V. Savant, J. Gopalakrishnan, C. C. Patel, Inorg. Chem. 1969, 8, 748.
- 15Z. H. Zhang, W. P. Lim, C. T. Wong, F. F. Yin, W. S. Chin, unpublished results.
- 16
- 16aM. P. Pileni, Appl. Surf. Sci. 2001, 171, 1;
- 16bM. P. Pileni, J. Phys. Chem. B 2001, 105, 3358;
- 16cL. Motte, F. Billoudet, E. Lacaze, J. Douin, M. P. Pileni, J. Phys. Chem. B 1997, 101, 138.
- 17R. J. Cava, D. B. McWhan, Phys. Rev. Lett. 1980, 45, 2046, and references therein.
- 18R. L. Allen, E. J. Moore, J. Phys. Chem. 1959, 63, 223, and references therein.
- 19Preliminary results from DFT B3LYP//LANL2DZ calculations showed that the bond dissociation energy of AgSCOPh is 265.95 kJ mol−1, whereas that of AgSCOPh is 206.41 kJ mol−1.
- 20Isolation of CH3(CH2)15NHCOPh: The product was purified by preparative TLC and recrystallized from chloroform/hexane. 1H NMR (CDCl3): δ=0.88 (t, J=6.6 Hz, 3 H; CH3), 1.26 (s, 26 H; CH2), 1.59 (quin, 2 H; NHCH2CH2), 3.46 (q, J=6.7 Hz, 2 H; NHCH2), 6.08 (br, 1 H; NH), 7.40–7.52 (overlapping t, 3 H; m-,p-Ph), 7.75 ppm (d, J=6.8 Hz, 2 H; o-Ph); 13C NMR (CDCl3): δ=14.0 (CH3), 22.6 (CH2CH3), 26.9 (NCH2CH2CH2), 29.2–29.6 (CH2), 31.8 (NCH2CH2), 40.0 (NCH2), 126.7 (o-Ph), 128.4 (m-Ph), 131.2 (p-Ph), 167.8 ppm (-CO); elemental analysis (%) calcd: C 79.94, H 11.38, N 4.05; found: C 80.13, H 10.92, N 4.24.
- 21
- 21aS-M Lee, S-N Cho, J. Cheon, Adv. Mater. 2003, 15, 441;
- 21bZ. A. Peng, X. Peng, J. Am. Chem. Soc. 2002, 124, 3343;
- 21cW. W. Yu, Y. A. Wang, X. Peng, Chem. Mater. 2003, 15, 4300.