Thermally Activated Delayed Fluorescence Materials Featuring Multipathway Charge Transfer for High-Efficiency BT.2020-Compliant Deep-Blue OLEDs
Yufu Sun
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorXi-Feng Fu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorChen-Lu Hou
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorTing-Ting Lin
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorDong-Hai Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorJin Liu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorJia-Xuan Hu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorFu-Lin Lin
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Prof. Liang Zhou
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorProf. Lingyi Meng
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Prof. Xu-Lin Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Can-Zhong Lu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYufu Sun
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorXi-Feng Fu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorChen-Lu Hou
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorTing-Ting Lin
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorDong-Hai Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorJin Liu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorJia-Xuan Hu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorFu-Lin Lin
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Prof. Liang Zhou
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorProf. Lingyi Meng
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Prof. Xu-Lin Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Can-Zhong Lu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Xiamen, 361021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
BT.2020-compliant deep-blue emitters for organic light-emitting diodes (OLEDs) are in high demand to achieve a wide color gamut for ultrahigh-definition displays. Herein, we report deep-blue thermally activated delayed fluorescent emitters featuring a unique donor1-donor2-acceptor (D1-D2-A) molecular configuration in which C1-N linked carbazole derivatives serve as dual-function donors and an oxygen-bridged triarylboron unit acts as the acceptor. The new design strategy focuses on constructing excited states with multipathway charge transfer characteristics—including multiresonance, through-bond, and through-space charge transfer—by precisely tuning the relative electron-donating strengths of the D1 and D2 units. Experimental and theoretical studies reveal that the optimized emitter, BO-BTC, achieves a well-balanced trade-off among emission efficiency, color purity, singlet–triplet energy gap, and horizontal dipole orientation ratio. Consequently, OLEDs using BO-BTC as the terminal emitter or as the sensitizer for ν-DABNA achieve high-efficiency deep-blue electroluminescence, with external quantum efficiencies of up to 24.7% and 37.9%, Commission Internationale de l’Éclairage-y values of 0.038 and 0.106, respectively.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202511921-sup-0001-SuppMat.docx15.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. M. Dos Santos, D. Hall, B. Basumatary, M. Bryden, D. Chen, P. Choudhary, T. Comerford, E. Crovini, A. Danos, J. De, S. Diesing, M. Fatahi, M. Griffin, A. K. Gupta, H. Hafeez, L. Hämmerling, E. Hanover, J. Haug, T. Heil, D. Karthik, S. Kumar, O. Lee, H. Li, F. Lucas, C. F. R. Mackenzie, A. Mariko, T. Matulaitis, F. Millward, Y. Olivier, Q. Qi, et al. Chem. Rev. 2024, 124, 13736–14110.
- 2X. Fan, X. Hao, F. Huang, J. Yu, K. Wang, X. Zhang, Adv. Sci. 2023, 10, 2303504.
- 3G. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J. M. Busch, S. Bräse, Adv. Mater. 2021, 33, 2005630.
- 4H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234–238.
- 5G. Meng, H. Dai, Q. Wang, J. Zhou, T. Fan, X. Zeng, X. Wang, Y. Zhang, D. Yang, D. Ma, D. Zhang, L. Duan, Nat. Commun. 2023, 14, 2394.
- 6Q.-Y. Meng, X.-L. Wen, J. Qiao, J. Phys. Chem. Lett. 2024, 15, 12571–12583.
- 7J.-H. Lee, C.-H. Chen, P.-H. Lee, H.-Y. Lin, M.-k. Leung, T.-L. Chiu, C.-F. Lin, J. Mater. Chem. C 2019, 7, 5874–5888.
- 8H. J. Kim, T. Yasuda, Adv. Opt. Mater. 2022, 10, 2201714.
- 9Q. Jin, M. Du, Y. Zhang, L. Duan, Adv. Opt. Mater. 2025, 2402918.
- 10H. Hirai, K. Nakajima, S. Nakatsuka, K. Shiren, J. Ni, S. Nomura, T. Ikuta, T. Hatakeyama, Angew. Chem. Int. Ed. 2015, 54, 13581–13585.
- 11T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777–2781.
- 12S. J. Wu, X. F. Fu, D. H. Zhang, Y. F. Sun, X. Lu, F. L. Lin, L. Meng, X. L. Chen, C. Z. Lu, Adv. Mater. 2024, 36, 2401724.
- 13D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H. Kwon, Nat. Photonics 2019, 13, 540–546.
- 14Z. Zhao, C. Zeng, X. Peng, Y. Liu, H. Zhao, L. Hua, S. J. Su, S. Yan, Z. Ren, Angew. Chem. Int. Ed. 2022, 61, e202210864.
- 15H. J. Kim, H. Kang, J. E. Jeong, S. H. Park, C. W. Koh, C. W. Kim, H. Y. Woo, M. J. Cho, S. Park, D. H. Choi, Adv. Funct. Mater. 2021, 31, 2102588.
- 16R. Z. An, Y. Sun, H. Y. Chen, Y. Liu, A. Privitera, W. K. Myers, T. K. Ronson, A. J. Gillett, N. C. Greenham, L. S. Cui, Adv. Mater. 2024, 36, 2313602.
- 17X. He, J. Lou, B. Li, X. Dong, F. Zhong, W. Liu, X. Feng, D. Yang, D. Ma, Z. Zhao, Z. Wang, B. Z. Tang, Adv. Mater. 2024, 36, 2310417.
- 18H. Lim, H. J. Cheon, S. J. Woo, S. K. Kwon, Y. H. Kim, J. J. Kim, Adv. Mater. 2020, 32, e2004083.
- 19H. J. Kim, M. Godumala, S. K. Kim, J. Yoon, C. Y. Kim, H. Park, J. H. Kwon, M. J. Cho, D. H. Choi, Adv. Opt. Mater. 2020, 8, 1902175.
- 20J. Hwang, C. W. Koh, J. M. Ha, H. Y. Woo, S. Park, M. J. Cho, D. H. Choi, ACS Appl. Mater. Interfaces 2021, 13, 61454–61462.
- 21J. K. Bian, S. Chen, L. L. Qiu, R. D. Tian, Y. Man, Y. D. Wang, S. Chen, J. Zhang, C. B. Duan, C. M. Han, H. Xu, Adv. Mater. 2022, 34, 2110547.
- 22H. Tsujimoto, D. G. Ha, G. Markopoulos, H. S. Chae, M. A. Baldo, T. M. Swager, J. Am. Chem. Soc. 2017, 139, 4894–4900.
- 23X. L. Chen, J. H. Jia, R. Yu, J. Z. Liao, M. X. Yang, C. Z. Lu, Angew. Chem. Int. Ed. 2017, 56, 15006–15009.
- 24C. Yang, C. Wu, W. Liu, K. Li, G. Cheng, J. Xiong, T. Teng, C.-M. Che, Angew. Chem. Int. Ed. 2020, 59, 3994–3999.
- 25Y. K. Qu, D. Y. Zhou, Q. Zheng, P. Zuo, Z. L. Che, L. S. Liao, Z. Q. Jiang, Angew. Chem. Int. Ed. 2024, 63, e202408712.
- 26S. Luo, J. Wang, N. Li, X. F. Song, X. Wan, K. Li, C. Yang, Angew. Chem. Int. Ed. 2023, 62, e202310943.
- 27J. H. Shiyang Shao, X. Wang, L. Wang, X. Jing, F. Wang, J. Am. Chem. Soc. 2017, 139, 17739–17742.
- 28M. L. Louillat, A. Biafora, F. Legros, F. W. Patureau, Angew. Chem. Int. Ed. 2014, 53, 3505–3509.
- 29Y. Gong, J. Liu, Y. Zhang, G. He, Y. Lu, W. B. Fan, W. Z. Yuan, J. Z. Sun, Y. Zhang, J. Mater. Chem. C 2014, 2, 7552–7560.
- 30T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 31Z. Situ, X. Li, H. Gao, J. Zhang, Y. Li, F. Zhao, J. Kong, H. Zhao, M. Zhou, Y. Wang, Z. Kuang, A. Xia, J. Phys. Chem. Lett. 2024, 15, 4197–4205.
- 32J. Song, X. Lv, J. Gu, C. Yam, L. Meng, Phys. Chem. Chem. Phys. 2024, 26, 6420–6428.
- 33Y. Feng, Y. Xu, C. Qu, Q. Wang, K. Ye, Y. Liu, Y. Wang, Adv. Mater. 2024, 36, 2403061.
- 34Y. Pu, X. Cai, Y. Qu, W. Cui, L. Li, C. Li, Y. Zhang, Y. Wang, Angew. Chem. Int. Ed. 2025, 64, e202420253.
- 35Y. Sun, X. F. Fu, C. L. Hou, D. H. Zhang, J. X. Hu, F. L. Lin, L. Meng, L. Zhou, X. L. Chen, C. Z. Lu, Adv. Opt. Mater. 2025, 13, 2403565.
- 36T. Hosokai, H. Matsuzaki, H. Nakanotani, K. Tokumaru, T. Tsutsui, A. Furube, K. Nasu, H. Nomura, M. Yahiro, C. Adachi, Sci. Adv. 2017, 3, e1603282.
- 37H. Noda, X. K. Chen, H. Nakanotani, T. Hosokai, M. Miyajima, N. Notsuka, Y. Kashima, J. L. Brédas, C. Adachi, Nat. Mater. 2019, 18, 1084–1090.
- 38H. S. Kim, S. H. Lee, S. Yoo, C. Adachi, Nat. Commun. 2024, 15, 2267.
- 39Y. Chang, K. Zhang, L. Zhao, X. Wang, S. Wang, S. Shao, L. Wang, Angew. Chem. Int. Ed. 2025, 64, e202415607.
- 40D. Zhang, S. Jiang, X. Tao, F. Lin, L. Meng, X.-L. Chen, C.-Z. Lu, Research 2023, 6, 0155.
- 41Z. L. Wu, Y. F. Sun, X. Lv, D. H. Zhang, L. Zhou, L. Meng, X. L. Chen, C. Z. Lu, Adv. Funct. Mater. 2024, 34, 2314533.
- 42D. Wan, J. Zhou, Y. Yang, G. Meng, D. Zhang, L. Duan, J. Ding, Adv. Mater. 2024, 36, 2409706.
- 43Y. F. Sun, X. L. Chen, D. H. Zhang, P. Huo, Z. Liu, L. Zhou, F. L. Lin, C. Z. Lu, Adv. Mater. 2024, 36, 2408118.
- 44J. Kang, S. O. Jeon, H. L. Lee, J. Lim, U. Jo, J. Y. Lee, Mater. Today 2023, 69, 88–96.
- 45J. Wei, C. Zhang, D. Zhang, Y. Zhang, Z. Liu, Z. Li, G. Yu, L. Duan, Angew. Chem. Int. Ed. 2021, 60, 12269–12273.
- 46X. He, J. Lou, B. Li, H. Wang, X. Peng, G. Li, L. Liu, Y. Huang, N. Zheng, L. Xing, Y. Huo, D. Yang, D. Ma, Z. Zhao, Z. Wang, B. Z. Tang, Angew. Chem. Int. Ed. 2022, 61, e202209425.
- 47T. Hua, X. Cao, J. Miao, X. Yin, Z. Chen, Z. Huang, C. Yang, Nat. Photonics 2024, 18, 1161–1169.
- 48J. Jin, C. Duan, H. Jiang, P. Tao, H. Xu, W. Y. Wong, Angew. Chem. Int. Ed. 2023, 62, e202218947.
- 49P. Ma, Y. Chen, Y. Man, Q. Qi, Y. Guo, H. Wang, Z. Li, P. Chang, C. Qu, C. Han, H. Xu, Angew. Chem. Int. Ed. 2023, 63, e202316479.
- 50J. Ochi, Y. Yamasaki, K. Tanaka, Y. Kondo, K. Isayama, S. Oda, M. Kondo, T. Hatakeyama, Nat. Commun. 2024, 15, 2361.
- 51P. Ma, Y. Y. Chen, Y. Man, Q. Qi, Y. T. Guo, H. Q. Wang, Z. Li, P. Chang, C. Qu, C. M. Han, H. Xu, Angew. Chem. Int. Ed. 2024, 63, e202316479.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.