Fully Exposed Silver Clusters Enabling Highly Efficient Photocatalytic H2O2 Production in Pure Water
Qian Liu
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
Search for more papers by this authorHao Bi
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
Search for more papers by this authorRan Zhao
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
Search for more papers by this authorXiaowen Yang
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Fangyuan Chen
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Zhurui Shen
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQian Liu
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
Search for more papers by this authorHao Bi
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
Search for more papers by this authorRan Zhao
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
Search for more papers by this authorXiaowen Yang
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Fangyuan Chen
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Zhurui Shen
School of Materials Science and Engineering and Smart Sensing, Interdisciplinary Science Center, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Photocatalytic production of H2O2 in pure water holds great potential for sustainable industry. However, this prospect is greatly hindered by its sluggish reaction kinetics involving multistep electron transfer and unstable intermediates. Herein, the fully exposed silver (Ag) clusters were anchored on poly(heptazinimide) (PHI) catalyst, forming a new kind of fully exposed cluster catalysts (FECCs), which can boost photocatalytic generation of H2O2 in pure water, with a rate up to 1075.5 µmol g−1 h−1, surpassing its Ag single atoms counterpart and many recent-reported state-of-the-art photocatalysts. In situ characterization and DFT analysis showed that fully exposed Ag clusters can form the electron-rich centers and optimize the binding energy of the O2 and proton H, which in turn enhances the protonation process of *OOH, reducing the energy barrier of key steps, and finally leading to a high yield of H2O2. Interestingly, its Ag single-atom counterpart was favorable for decomposing the H2O2 into ·OH. Thus, Ag FECCs achieve significantly enhanced tetracycline degradation efficiency with the strategic incorporation of Ag single atoms.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202511687-sup-0001-SuppMat.docx10.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Zhang, C. Pan, G. Bian, J. Xu, Y. Dong, Y. Zhang, Y. Lou, W. Liu, Y. Zhu, Nat. Energy 2023, 8, 361–371.
- 2R. J. Lewis, K. Ueura, X. Liu, Y. Fukuta, T. E. Davies, D. J. Morgan, L. Chen, J. Qi, J. Singleton, J. K. Edwards, S. J. Freakley, C. J. Kiely, Y. Yamamoto, G. J. Hutchings, Science 2022, 376, 615–620.
- 3X. Wang, Y. Tong, W. Feng, P. Liu, X. Li, Y. Cui, T. Cai, L. Zhao, Q. Xue, Z. Yan, X. Yuan, W. Xing, Nat. Commun. 2023, 14, 3767.
- 4F.-Y. Yu, Y.-J. Zhou, H.-Q. Tan, Y.-G. Li, Z.-H. Kang, Adv. Energy Mater. 2023, 13, 2300119.
- 5X. Zhou, Y. Min, C. Zhao, C. Chen, M.-K. Ke, S.-L. Xu, J.-J. Chen, Y. Wu, H.-Q. Yu, Nat. Commun. 2024, 15, 6891.
- 6A. Rodríguez-Camargo, M. W. Terban, M. Paetsch, E. A. Rico, D. Graf, R. Hirpara, V. Duppel, I. Moudrakovski, M. Etter, N. Guijarro, C. Ochsenfeld, R. E. Dinnebier, L. Yao, B. V. Lotsch, Nat. Synth. 2025, 4, 710–719.
- 7Z. Deng, S. J. Choi, G. Li, X. Wang, Chem. Soc. Rev. 2024, 53, 8137–8181.
- 8H.-c. Li, Q. Wan, C. Du, J. Zhao, F. Li, Y. Zhang, Y. Zheng, M. Chen, K. H. L. Zhang, J. Huang, G. Fu, S. Lin, X. Huang, H. Xiong, Nat. Commun. 2022, 13, 6072.
- 9W. Liu, P. Wang, J. Chen, X. Gao, H. N. Che, B. Liu, Y. Ao, Adv. Funct. Mater. 2022, 32, 2205119.
- 10C. Wu, Z. Teng, C. Yang, F. Chen, H. Bin Yang, L. Wang, H. Xu, B. Liu, G. Zheng, Q. Han, Adv. Mater. 2022, 34, 2110266.
- 11Y. Deng, W. Liu, R. Xu, R. Gao, N. Huang, Y. Zheng, Y. Huang, H. Li, X. Y. Kong, L. Ye, Angew. Chem. Int. Ed. 2024, 63, e202319216.
- 12E. Zhou, F. Wang, X. Zhang, Y. Hui, Y. Wang, Angew. Chem. Int. Ed. 2024, 63, e202400999.
- 13H. Guo, L. Zhou, K. Huang, Y. Li, W. Hou, H. Liao, C. Lian, S. Yang, D. Wu, Z. Lei, Z. Liu, L. Wang, Adv. Funct. Mater. 2024, 34, 2402650.
- 14J. Hou, K. Wang, X. Zhang, Y. Wang, H. Su, C. Yang, X. Zhou, W. Liu, H. Hu, J. Wang, C. Li, P. Ma, R. Zhang, Z. Wei, Z. Sun, Q. Liu, K. Zheng, ACS Catal. 2024, 14, 10893–10903.
- 15Z. Li, X. Shi, H. Cheng, Y. Song, Y. Jiao, S. Shi, J. Gao, J. Hou, Adv. Energy Mater. 2024, 14, 2302797.
- 16M. Peng, C. Dong, R. Gao, D. Xiao, H. Liu, D. Ma, ACS Central Sci 2021, 7, 262–273.
- 17C. Xia, Y. Qiu, Y. Xia, P. Zhu, G. King, X. Zhang, Z. Wu, J. Y. Kim, D. A. Cullen, D. Zheng, P. Li, M. Shakouri, E. Heredia, P. Cui, H. N. Alshareef, Y. Hu, H. Wang, Nat. Chem. 2021, 13, 887–894.
- 18X. Hai, S. Xi, S. Mitchell, K. Harrath, H. Xu, D. F. Akl, D. Kong, J. Li, Z. Li, T. Sun, H. Yang, Y. Cui, C. Su, X. Zhao, J. Li, J. Perez-Ramirez, J. Lu, Nat. Nanotechnol. 2022, 17, 174–181.
- 19L. Zeng, K. Cheng, F. Sun, Q. Fan, L. Li, Q. Zhang, Y. Wei, W. Zhou, J. Kang, Q. Zhang, M. Chen, Q. Liu, L. Zhang, J. Huang, J. Cheng, Z. Jiang, G. Fu, Y. Wang, Science 2024, 383, 998–1004.
- 20X. Chen, M. Peng, D. Xiao, H. Liu, D. Ma, ACS Catal. 2022, 12, 12720–12743.
- 21Y. Wang, H. Yu, Y. He, S. Xiang, X. Qin, L. Yang, J. Chen, Y. Si, J. Zhang, J. Diao, N. Wang, M. Peng, D. Ma, H. Liu, Angew. Chem. Int. Ed. 2025, 64, e202415542.
- 22E. Zhu, T. Zheng, J. Yu, C. Shi, L. Zhou, H. Jin, J. Yang, G. Luo, D. Wei, X. Yang, M. Xu, Energy Storage Mater. 2024, 69, 103410.
- 23L. Jing, Z. Li, Z. Chen, R. Li, J. Hu, Angew. Chem. Int. Ed. 2024, 63, 2406398.
- 24Y. Zheng, Y. Cui, Q. Ruan, Y. Zhao, H. Hou, Y. Zhou, C. Ling, J. Wang, Z. Chen, X. Guo, ACS Nano 2024, 18, 14583–14594.
- 25Z. Liu, F. Huang, M. Peng, Y. Chen, X. Cai, L. Wang, Z. Hu, X. Wen, N. Wang, D. Xiao, H. Jiang, H. Sun, H. Liu, D. Ma, Nat. Commun. 2021, 12, 6194.
- 26S. Kou, S. Lian, X. Xie, W. Ren, Y. Jin, J. Bao, H. Ou, G. Yang, Nano Res. 2024, 17, 8036–8044.
- 27M. Ren, X. Zhang, Y. Liu, G. Yang, L. Qin, J. Meng, Y. Guo, Y. Yang, ACS Catal. 2022, 12, 5077–5093.
- 28B. B. Sarma, F. Maurer, D. E. Doronkin, J.-D. Grunwaldt, Chem. Rev. 2023, 123, 379–444.
- 29J. Timoshenko, B. R. Cuenya, Chem. Rev. 2021 121, 882–961.
- 30L. Zeng, Z. Zhao, Q. Huang, C. Zhou, W. Chen, K. Wang, M. Li, F. Lin, H. Luo, Y. Gu, L. Li, S. Zhang, F. Lv, G. Lu, M. Luo, S. Guo, J. Am. Chem. Soc. 2023, 145, 21432–21441.
- 31X.-H. Jiang, L.-S. Zhang, H.-Y. Liu, D.-S. Wu, F.-Y. Wu, L. Tian, L.-L. Liu, J.-P. Zou, S.-L. Luo, B.-B. Chen, Angew. Chem. Int. Ed. 2020, 59, 23112–23116.
- 32Z. Zhou, Z. Shen, C. Song, M. Li, H. Li, S. Zhan, Water Res. 2021, 201, 117314.
- 33Y. Si, Y. Jiao, M. Wang, S. Xiang, J. Diao, X. Chen, J. Chen, Y. Wang, D. Xiao, X. Wen, N. Wang, D. Ma, H. Liu, Nat. Commun. 2024, 15, 4887.
- 34S. Hu, P. Qiao, X. Yi, Y. Lei, H. Hu, J. Ye, D. Wang, Angew. Chem. Int. Ed. 2023, 62, e202304585.
- 35M. V. Grabchenko, G. V. Mamontov, V. I. Zaikovskii, V. La Parola, L. F. Liotta, O. V. Vodyankina, Appl. Catal. B-Environ. Energy 2020, 260, 118148.
- 36W. Jiang, H. Zhu, J. Yang, B. Q. L. Low, W.-Y. Wu, M. Chen, J. Ma, R. Long, J. Low, H. Zhu, J. Z. X. Heng, K. Y. Tang, C. H. T. Chai, M. Lin, Q. Zhu, Y.-W. Zhang, D. Chi, Z. Li, X. J. Loh, Y. Xiong, E. Ye, Adv. Sci. 2023, 10, 2303448.
- 37W. Liu, R. Chen, Z. Sang, Z. Li, J. Nie, L. Yin, F. Hou, J. Liang, Adv. Mater. 2024, 36, 2406403.
- 38C. Zhang, W. Shen, K. Guo, M. Xiong, J. Zhang, X. Lu, J. Am. Chem. Soc. 2023, 145, 11589–11598.
- 39Z. Wang, X. Jin, R. Xu, Z. Yang, S. Ma, T. Yan, C. Zhu, J. Fang, Y. Liu, S.-J. Hwang, Z. Pan, H. J. Fan, ACS Nano 2023, 17, 8622–8633.
- 40Z. Fang, M. Zhou, J. Tao, Y. Hou, W.-K. Ho, C. Yang, J. C. Yu, M. Anpo, J. Zhang, X. Wang, Appl. Catal. B-Environ. Energy 2025, 369, 125164.
- 41Z. Chen, C. Chu, D. Yao, Q. Li, S. Mao, Adv. Funct. Mater. 2024, 34, 2400506.
- 42H. Li, H. Ji, J. Liu, W. Liu, F. Li, Z. Shen, Appl. Catal. B-Environ. Energy 2023, 328, 122481.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.