Synergistic Covalently and Mechanically Interlocked Polymer
Yi Ding
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorYuanhao Wang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorChangyao Liu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorJingxi Deng
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorShaolei Qu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorDr. Yongming Wang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorDr. Ruixue Bai
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorYuhang Liu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorGuoquan Liu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorChuan Yue
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorProf. Wei Yu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Zhaoming Zhang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Xuzhou Yan
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYi Ding
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorYuanhao Wang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorChangyao Liu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorJingxi Deng
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorShaolei Qu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorDr. Yongming Wang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorDr. Ruixue Bai
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorYuhang Liu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorGuoquan Liu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorChuan Yue
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorProf. Wei Yu
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Zhaoming Zhang
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Xuzhou Yan
State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Integrating different polymer types into a unified system in a thoughtful manner leverages their complementary advantages, providing a promising strategy for developing high-performance materials. Mechanically interlocked polymers (MIPs), characterized by their unique spatial entanglement, exhibit distinctive performance advantages, yet their potential to expand material properties through rational integration with other polymer architectures presents substantial opportunities for continued investigation. Herein, we report a coherent integration of covalent polymers (CPs) and mechanically interlocked polymers through sequential orthogonal polymerizations, developing a novel synergistic covalently and mechanically interlocked polymer (CMIP) featuring both structural stability and force-induced dynamics. Compared to its structurally similar but noninterlocked control sample, CMIP demonstrates markedly enhanced thermomechanical stability and performance recovery, achieving a 93.4% recovery efficiency at 100% strain after just 5 min of rest, in contrast to 59.7% for the control. This remarkable stability and recovery result from the synergistic interplay between the covalent polymer framework and the interlocked structure, which work in tandem to preserve network integrity and enable rapid host−guest reformation. Notably, despite this significant improvement, CMIP retains a comparable damping capacity (91% versus 87%) and material toughness (14.8 versus 15.1 MJ m−3), owing to the efficient energy dissipation mechanisms enabled by host−guest dissociation and subsequent sliding motion. This strategy imparts CMIP with unique characteristics, offering a prospective pathway for the development of a diverse array of advanced synergistic materials with enhanced, multifaceted properties.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202510140-sup-0001-SuppMat.docx3.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Staudinger, Ber. Dtsch. Chem. Ges. A/B 1920, 53, 1073–1085.
- 2J. Zhao, Z. Zhang, C. Wang, X. Yan, CCS Chem. 2023, 6, 41–56.
- 3J. von der Ecken, M. Müller, W. Lehman, D. J. Manstein, P. A. Penczek, S. Raunser, Nature 2015, 519, 114–117.
- 4R. W. Nunes, J. R. Martin, J. F. Johnson, Polym. Eng. Sci. 1982, 22, 205–228.
- 5L. R. Otterbein, P. Graceffa, R. Dominguez, Science 2001, 293, 708–711.
- 6W. Wang, S. Zhou, X. Yu, Q.-H. Guo, Y. Ma, J. Song, L. Zhang, X. Yan, L. Han, Q. Liao, X. Li, W.-B. Zhang, Y. Mai, S. Zhang, S. Che, H.-B. Yang, X. Fu, M.-X. Wang, CCS Chem. 2024, 6, 2084–2109.
- 7L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P. Sijbesma, Chem. Rev. 2001, 101, 4071–4098.
- 8T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813–817.
- 9L. Yang, X. Tan, Z. Wang, X. Zhang, Chem. Rev. 2015, 115, 7196–7239.
- 10S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, Z. Bao, Nature 2018, 555, 83–88.
- 11R. Bai, X. Yang, J. Zhao, Z. Zhang, X. Yan, Chem. Res. Chin. Univ. 2023, 39, 777–781.
- 12T. L. Price, Jr., H. W. Gibson, J. Am. Chem. Soc. 2018, 140, 4455–4465.
- 13X. Zhang, L.-Y. Wang, J.-F. Xu, D.-Y. Chen, L.-Q. Shi, Y.-F. Zhou, Z.-H. Shen, Acta Polym. Sin. 2019, 50, 973–987.
- 14Y. Wang, Y. Ding, Y. Liu, S. Qu, W. Wang, W. Yu, Z. Zhang, F. Liu, X. Yan, Sci. China Chem. 2024, 67, 4234–4241.
- 15F. Chen, Z. Tang, S. Lu, L. Zhu, Q. Wang, Q. Gang, J. Yang, Q. Chen, Polymer 2019, 168, 159–167.
- 16W. Sun, B. Xue, Y. Li, M. Qin, J. Wu, K. Lu, J. Wu, Y. Cao, Q. Jiang, W. Wang, Adv. Funct. Mater. 2016, 26, 9044–9052.
- 17Y. Liang, K. Wang, J. Li, H. Wang, X.-Q. Xie, Y. Cui, Y. Zhang, M. Wang, C.-S. Liu, Adv. Funct. Mater. 2021, 31, 2104963.
- 18Z. Zhang, L. Cheng, J. Zhao, L. Wang, K. Liu, W. Yu, X. Yan, Angew. Chem. Int. Ed. 2020, 59, 12139–12146.
- 19A. M. Gordon, E. Homsher, M. Regnier, Physiol. Rev. 2000, 80, 853–924.
- 20Z. Zhang, L. Cheng, J. Zhao, H. Zhang, X. Zhao, Y. Liu, R. Bai, H. Pan, W. Yu, X. Yan, J. Am. Chem. Soc. 2021, 143, 902–911.
- 21B. Barua, D. A. Winkelmann, H. D. White, S. E. Hitchcock-DeGregori, Proc. Natl. Acad. Sci. USA 2012, 109, 18425–18430.
- 22Z. Zhang, J. Zhao, X. Yan, Acta Polym. Sin. 2022, 53, 691–706.
- 23Z. Yu, F. Tantakitti, T. Yu, L. C. Palmer, G. C. Schatz, S. I. Stupp, Science 2016, 351, 497–502.
- 24S. M. Chin, C. V. Synatschke, S. Liu, R. J. Nap, N. A. Sather, Q. Wang, Z. Álvarez, A. N. Edelbrock, T. Fyrner, L. C. Palmer, I. Szleifer, M. Olvera de la Cruz, S. I. Stupp, Nat. Commun. 2018, 9, 2395.
- 25C. Li, A. Iscen, H. Sai, K. Sato, N. A. Sather, S. M. Chin, Z. Álvarez, L. C. Palmer, G. C. Schatz, S. I. Stupp, Nat. Mater. 2020, 19, 900–909.
- 26S. I. Stupp, T. D. Clemons, J. K. Carrow, H. Sai, L. C. Palmer, Isr. J. Chem. 2020, 60, 124–131.
- 27X. Hou, C. Ke, Y. Zhou, Z. Xie, A. Alngadh, D. T. Keane, M. S. Nassar, Y. Y. Botros, C. A. Mirkin, J. F. Stoddart, Chem. Eur. J. 2016, 22, 12301–12306.
- 28Z. Zhang, J. Zhao, X. Yan, Acc. Chem. Res. 2024, 57, 992–1006.
- 29S. Mena-Hernando, E. M. Pérez, Chem. Soc. Rev. 2019, 48, 5016–5032.
- 30A. Goujon, E. Moulin, G. Fuks, N. Giuseppone, CCS Chem. 2019, 1, 83–96.
- 31L. F. Hart, J. E. Hertzog, P. M. Rauscher, B. W. Rawe, M. M. Tranquilli, S. J. Rowan, Nat. Rev. Mater. 2021, 6, 508–530.
- 32L. Chen, X. Sheng, G. Li, F. Huang, Chem. Soc. Rev. 2022, 51, 7046–7065.
- 33Y. Wang, J. Deng, J. Zhao, Y. Ding, L. Yang, Z. Zhang, X. Yan, Chinese J. Polym. Sci. 2024, 42, 1536–1544.
- 34X. Yang, L. Cheng, Z. Zhang, J. Zhao, R. Bai, Z. Guo, W. Yu, X. Yan, Nat. Commun. 2022, 13, 6654.
- 35T. Takata, ACS Cent. Sci. 2020, 6, 129–143.
- 36C. Liu, N. Morimoto, L. Jiang, S. Kawahara, T. Noritomi, H. Yokoyama, K. Mayumi, K. Ito, Science 2021, 372, 1078–1081.
- 37Y. Wang, Z. Zhang, H. Zhang, J. Zhao, G. Liu, R. Bai, Y. Liu, W. You, W. Yu, X. Yan, Chem 2023, 9, 2206–2221.
- 38L. Chen, W. You, J. Wang, X. Yang, D. Xiao, H. Zhu, Y. Zhang, G. Li, W. Yu, J. L. Sessler, F. Huang, J. Am. Chem. Soc. 2024, 146, 1109–1121.
- 39Y. Wang, L. Yang, L. Cheng, J. Zhao, R. Bai, W. Wang, S. Qu, Z. Zhang, W. Yu, X. Yan, Sci. China Chem. 2024, 67, 3414–3422.
- 40M. A. Nosiglia, N. D. Colley, M. K. Danielson, M. S. Palmquist, A. O. Delawder, S. L. Tran, G. H. Harlan, J. C. Barnes, J. Am. Chem. Soc. 2022, 144, 9990–9996.
- 41Z. Zhang, W. You, P. Li, J. Zhao, Z. Guo, T. Xu, J. Chen, W. Yu, X. Yan, J. Am. Chem. Soc. 2023, 145, 567–578.
- 42S.-W. Zhou, D. Zhou, R. Gu, C.-S. Ma, C. Yu, D.-H. Qu, Nat. Commun. 2024, 15, 1690.
- 43S. Ando, K. Ito, Macromolecules 2025, 58, 2157–2177.
- 44F. Kössl, M. Lisaj, V. Kozich, K. Heyne, O. Kühn, Chem. Phys. Lett. 2015, 621, 41–45.
- 45L. Cheng, W. Wang, R. Bai, W. You, Y. Liang, Z. Yan, R. Zhang, X. Yan, W. Yu, Angew. Chem. Int. Ed. 2025, 64, e202422104.
- 46R. H. Ewoldt, A. E. Hosoi, G. H. McKinley, J. Rheol. 2008, 52, 1427–1458.
- 47M. Kamkar, R. Salehiyan, T. B. Goudoulas, M. Abbasi, C. Saengow, E. Erfanian, S. Sadeghi, G. Natale, S. A. Rogers, A. J. Giacomin, U. Sundararaj, Prog. Polym. Sci. 2022, 132, 101580.
- 48K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee, R. H. Ewoldt, G. H. McKinley, Prog. Polym. Sci. 2011, 36, 1697–1753.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.