Exposure of Au Atom on Au(111) in Metal Nanoclusters for pH-Universal Electrocatalysis
Yajie Guan
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorXia Zhou
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorQisheng Yan
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZhanyu Wang
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 P.R. China
Search for more papers by this authorCorresponding Author
Jie Yang
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 P.R. China
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Qing Tang
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331 P.R. China
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Likai Wang
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049 P.R. China
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Nan Xia
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 P.R. China
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorYajie Guan
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorXia Zhou
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorQisheng Yan
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZhanyu Wang
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 P.R. China
Search for more papers by this authorCorresponding Author
Jie Yang
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 P.R. China
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Qing Tang
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331 P.R. China
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Likai Wang
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049 P.R. China
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Nan Xia
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 P.R. China
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
The control of surface and interface structures in nanocatalysts is a promising strategy for enhancing catalytic performance, but significant challenges persist in achieving precisely designed active sites or environments on the surface/interface of fully protected metal nanoclusters. In this study, we report the construction of an exposed Au atom on Au(111) and the formation of a unique surface/interface environment on the Au52 cluster via a cyclopentanethiol-etching strategy. Theoretical calculations and in situ attenuated total reflection infrared adsorption spectroscopy reveal that the exposed Au atom facilitates CO2 activation, while the tailored surface/interface environment promotes the accumulation of strongly hydrogen-bonded water, which can be validated by the molecular dynamic simulation, thus enhancing proton transfer and suppressing hydrogen evolution reaction (HER). Notably, the surface/interface-modified Au52 cluster showcases high activity, selectivity, and durability across pH-universal (acidic, neutral, and alkaline) electrolytes, providing new insights for designing high-performance electrocatalysts at atomic level.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202508459-sup-0001-SuppMat.docx16.6 MB | Supporting Information |
ange202508459-sup-0002-SuppMat.zip1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Xie, Z. Niu, D. Kim, M. Li, P. Yang, Chem. Rev. 2020, 120, 1184.
- 2H. Lindlar, Helv. Chim. Acta 1952, 35, 446–450.
- 3V. Z. Fridman, R. Xing, Appl. Catal. A 2017, 530, 154–165.
- 4P. Liu, R. Qin, G. Fu, N. Zheng, J. Am. Chem. Soc. 2017, 139, 2122–2131.
- 5S. Chen, X. Chang, G. Sun, T. Zhang, Y. Xu, Y. Wang, C. Pei, J. Gong, Chem. Soc. Rev. 2021, 50, 3315.
- 6M. A. Boles, D. Ling, T. Hyeon, D. V. Talapin, Nat. Mater. 2016, 15, 141–153.
- 7T. Ishida, T. Murayama, A. Taketoshi, M. Haruta, Chem. Rev. 2020, 120, 464–525.
- 8R. Jin, G. Li, S. Sharma, Y. Li, X. Du, Chem. Rev. 2021, 121, 567.
- 9W. Jing, H. Shen, R. Qin, Q. Wu, K. Liu, N. Zheng, Chem. Rev. 2023, 123, 5948–6002.
- 10Y. Du, H. Sheng, D. Astruc, M. Zhu, Chem. Rev. 2020, 120, 526.
- 11Z. Lei, X.-K. Wan, S.-F. Yuan, Z.-J. Guan, Q.-M. Wang, Acc. Chem. Res. 2018, 51, 2465.
- 12K. Konishi, M. Iwasaki, Y. Shichibu, Acc. Chem. Res. 2018, 51, 3125–3133.
- 13S.-F. Yuan, W.-D. Liu, C.-Y. Liu, Z.-J. Guan, Q.-M. Wang, Chem. Eur. J. 2022, 28, e202104445.
- 14Q. Tang, G. Hu, V. Fung, D.-e. Jiang, Acc. Chem. Res. 2018, 51, 2793–2802.
- 15Y. Sun, X. Cheng, Y. Zhang, A. Tang, X. Cai, X. Liu, Y. Zhu, Nanoscale 2020, 12, 18004–18012.
- 16T. Higaki, Y. Li, S. Zhao, Q. Li, S. Li, X.-S. Du, S. Yang, J. Chai, R. Jin, Angew. Chem. Int. Ed. 2019, 58, 8291–8302.
- 17X.-K. Wan, J.-Q. Wang, Z.-A. Nan, Q.-M. Wang, Sci. Adv. 2017, 3, e1701823.
- 18J. Wang, F. Xu, Z.-Y. Wang, S.-Q. Zang, T. C. W. Mak, Angew. Chem. Int. Ed. 2022, 61, e202207492.
- 19G. Deng, H. Yun, M. S. Bootharaju, F. Sun, K. Lee, X. Liu, S. Yoo, Q. Tang, Y. J. Hwang, T. Hyeon, J. Am. Chem. Soc. 2023, 145, 27407–27414.
- 20Y. Zhou, W. Gu, R. Wang, W. Zhu, Z. Hu, W. Fei, S. Zhuang, J. Li, H. Deng, N. Xia, J. He, Z. Wu, Nano Lett. 2024, 24, 2226.
- 21G. Deng, H. Yun, Y. Chen, S. Yoo, K. Lee, J. Jang, X. Liu, C. W. Lee, Q. Tang, M. S. Bootharaju, Y. J. Hwang, T. Hyeon, Angew. Chem. Int. Ed. 2025, 64, e202418264.
- 22C. Vogt, B. M. Weckhuysen, Nat. Rev. Chem. 2022, 6, 89.
- 23C. Xie, D. Yan, H. Li, S. Du, W. Chen, Y. Wang, Y. Zou, R. Chen, S. Wang, ACS Catal. 2020, 10, 11082.
- 24A. Janssen, Q. N. Nguyen, Y. Xia, Angew. Chem. Int. Ed. 2021, 60, 12192.
- 25Q. Yao, Z. Yu, L. Li, X. Huang, Chem. Rev. 2023, 123, 9676–9717.
- 26Q.-F. Zhang, X. Chen, L.-S. Wang, Acc. Chem. Res. 2018, 51, 2159–2168.
- 27J. Chen, Q.-F. Zhang, T. A. Bonaccorso, P. G. Williard, L.-S. Wang, J. Am. Chem. Soc. 2014, 136, 92–95.
- 28S.-F. Yuan, Z. Lei, Z.-J. Guan, Q.-M. Wang, Angew. Chem. Int. Ed. 2021, 60, 5225–5229.
- 29Z.-H. Gao, K. Wei, T. Wu, J. Dong, D.-e. Jiang, S. Sun, L.-S. Wang, J. Am. Chem. Soc. 2022, 144, 5258–5262.
- 30Y. Li, H. K. Kim, R. D. McGillicuddy, S.-L. Zheng, K. J. Anderton, G. J. Stec, J. Lee, D. Cui, J. A. Mason, J. Am. Chem. Soc. 2023, 145, 9304–9312.
- 31L.-J. Liu, F. Alkan, S. Zhuang, D. Liu, T. Nawaz, J. Guo, X. Luo, J. He, Nat. Commun. 2023, 14, 2397.
- 32Y. Fukumoto, T. Omoda, H. Hirai, S. Takano, K. Harano, T. Tsukuda, Angew. Chem. Int. Ed. 2024, 63, e202402025.
- 33H. Guo, Y. Chen, Y.-Z. Han, Q. Wu, L. Wang, Q. Xu, R. Huo, X. Gong, J. Sun, Q. Tang, H. Shen, Chem. Mater. 2024, 36, 7243.
- 34C. Zeng, Y. Chen, C. Liu, K. Nobusada, N. L. Rosi, R. Jin, Sci. Adv. 2015, 1, e1500425.
- 35A. Das, C. Liu, C. Zeng, G. Li, T. Li, N. L. Rosi, R. Jin. J. Phys. Chem. A 2014, 118, 8264.
- 36Y. Li, R. Juarez-Mosqueda, Y. Song, Y. Zhang, J. Chai, G. Mpourmpakis, R. Jin. Nanoscale 2020, 12, 9423.
- 37C. Zeng, C. Liu, Y. Pei, R. Jin, ACS Nano 2013, 7, 6138–6145.
- 38 Deposition numbers 2413891 (for Au52-1) and 2413892 (for Au52-2) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 39C. Zeng, Y. Chen, K. Iida, K. Nobusada, K. Kirschbaum, K. J. Lambright, R. Jin, J. Am. Chem. Soc. 2016, 138, 3950.
- 40W. Gu, Y. Zhou, W. Wang, Q. You, W. Fan, Y. Zhao, G. Bian, R. Wang, L. Fang, N. Yan, N. Xia, L. Liao, Z. Wu, Angew. Chem. Int. Ed. 2024, 63, e202407518.
- 41L. Nguyen, F. F. Tao, Y. Tang, J. Dou, X.-J. Bao, Chem. Rev. 2019, 119, 6822–6905.
- 42S. Li, D. Alfonso, A. V. Nagarajan, S. D. House, J. C. Yang, D. R. Kauffman, G. Mpourmpakis, R. Jin, ACS Catal. 2020, 10, 12011.
- 43H. Seong, M. Choi, S. Park, H.-w. Kim, J. Kim, W. Kim, J. S. Yoo, D. Lee, ACS Energy Lett. 2022, 7, 4177–4184.
- 44H. Seong, Y. Jo, V. Efremov, Y. Kim, S. Park, S. M. Han, K. Chang, J. Park, W. Choi, W. Kim, C. H. Choi, J. S. Yoo, D. Lee, J. Am. Chem. Soc. 2023, 145, 2152–2160.
- 45Z. Xu, H. Dong, W. Gu, Z. He, F. Jin, C. Wang, Q. You, J. Li, H. Deng, L. Liao, D. Chen, J. Yang, Z. Wu, Angew. Chem. Int. Ed. 2023, 62, e202308441.
- 46J.-K. Li, J.-P. Dong, S.-S. Liu, Y. Hua, X.-L. Zhao, Z. Li, S.-N. Zhao, S.-Q. Zang, R. Wang, Angew. Chem. Int. Ed. 2024, 63, e202412144.
- 47S. Zhu, B. Jiang, W.-B. Cai, M. Shao, J. Am. Chem. Soc. 2017, 139, 15664–15667.
- 48N. J. Firet, W. A. Smith, ACS Catal. 2017, 7, 606–612.
- 49H. Dong, L. Zhang, L. Li, W. Deng, C. Hu, Z.-J. Zhao, J. Gong, Small 2019, 15, 1900289.
- 50Z. Mi, T. Wang, L. Xiao, G. Wang, L. Zhuang, J. Am. Chem. Soc. 2024, 146, 17377–17383.
- 51F. Sun, L. Qin, Z. Tang, Q. Tang, Chem. Sci. 2024, 15, 16142–16155.
- 52Q. Zhang, H. J. Tsai, F. Li, Z. Wei, Q. He, J. Ding, Y. Liu, Z.-Y. Lin, X. Yang, Z. Chen, F. Hu, X. Yang, Q. Tang, H. B. Yang, S.-F. Hung, Y. Zhai, Angew. Chem. Int. Ed. 2023, 62, e202311550.
- 53Q. Dong, X. Zhang, D. He, C. Lang, D. Wang, ACS Cent. Sci. 2019, 5, 1461–1467.
- 54X. Wang, X. Sang, C.-L. Dong, S. Yao, L. Shuai, J. Lu, B. Yang, Z. Li, L. Lei, M. Qiu, L. Dai, Y. Hou, Angew. Chem. Int. Ed. 2021, 60, 11959.
- 55P. Li, Y. Jiang, Y. Hu, Y. Men, Y. Liu, W. Cai, S. Chen, Nat. Catal. 2022, 5, 900–911.
- 56H. Zhang, J. Gao, D. Raciti, A. S. Hall, Nat. Catal. 2023, 6, 807–817.
- 57W. Ni, Y. Guan, H. Chen, Y. Zhang, S. Wang, S. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202303233.
- 58Y. Wang, J. Zhang, J. Zhao, Y. Wei, S. Chen, H. Zhao, Y. Su, S. Ding, C. Xiao, ACS Catal. 2024, 14, 3457–3465.
- 59Z. Zhu, Y. Zhu, Z. Ren, D. Liu, F. Yue, D. Sheng, P. Shao, X. Huang, X. Feng, A.-X. Yin, J. Xie, B. Wang, J. Am. Chem. Soc. 2024, 146, 1572–1579.
- 60W. Ge, L. Dong, C. Wang, Y. Zhu, Z. Liu, H. Jiang, C. Li, ACS Catal. 2024, 14, 10529–10537.
- 61J. E. Huang, F. Li, A. Ozden, A. Sedighian Rasouli, F. P. García de Arquer, S. Liu, S. Zhang, M. Luo, X. Wang, Y. Lum, Y. Xu, K. Bertens, R. K. Miao, C.-T. Dinh, D. Sinton, E. H. Sargent, Science 2021, 372, 1074–1078.
- 62J. Gu, S. Liu, W. Ni, W. Ren, S. Haussener, X. Hu, Nat. Catal. 2022, 5, 268–276.
- 63L. Zhang, J. Feng, S. Liu, X. Tan, L. Wu, S. Jia, L. Xu, X. Ma, X. Song, J. Ma, X. Sun, B. Han, Adv. Mater. 2023, 35, 2209590.
- 64Z. Li, B. Sun, D. Xiao, Z. Wang, Y. Liu, Z. Zheng, P. Wang, Y. Dai, H. Cheng, B. Huang, Angew. Chem. Int. Ed. 2023, 62, e202217569.
- 65Z. Jiang, S. Ren, X. Cao, Q. Fan, R. Yu, J. Yang, J. Mao, Angew. Chem. Int. Ed. 2024, 63, e202408412.
- 66H. Liu, T. Yan, S. Tan, L. Sun, Z. Zhang, S. Hu, S.-H. Li, X. Kang, Y. Lei, L. Jiang, T. Hou, L. Liu, Q. Yu, B. Liu, J. Am. Chem. Soc. 2024, 146, 5333–5342.
- 67M. H. Hicks, W. Nie, A. E. Boehme, H. A. Atwater, T. Agapie, J. C. Peters, J. Am. Chem. Soc. 2024, 146, 25282–25289.
- 68A. Wang, W. Ge, W. Sun, X. Sheng, L. Dong, W. Zhang, H. Jiang, C. Li, Angew. Chem. Int. Ed. 2025, 64, e202412754.
- 69S. Yoo, S. Yoo, G. Deng, F. Sun, K. Lee, H. Jang, C. W. Lee, X. Liu, J. Jang, Q. Tang, Y. J. Hwang, T. Hyeon, M. S. Bootharaju, Adv. Mater. 2024, 36, 2313032.
- 70Z. Liu, J. Chen, B. Li, D.-e. Jiang, L. Wang, Q. Yao, J. Xie, J. Am. Chem. Soc. 2024, 146, 11773–11781.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.