A Universal P-Type Heterointerface for Inverted Perovskite Solar Cells
Biyun Ren
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorTengfei Pan
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorZihan Gu
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorXiaorong Shi
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorXueqin Ran
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorWan Yang
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorMeiru Duan
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorYuqian Xie
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorYue Wang
Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117 P.R. China
Search for more papers by this authorHe Dong
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072 P.R. China
Search for more papers by this authorKui Xu
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorZhengyi Sun
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorYingdong Xia
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorZhongan Li
Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorXingyu Gao
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 P.R. China
Search for more papers by this authorCorresponding Author
Lingfeng Chao
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yonghua Chen
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorBiyun Ren
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorTengfei Pan
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorZihan Gu
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorXiaorong Shi
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorXueqin Ran
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorWan Yang
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorMeiru Duan
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorYuqian Xie
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorYue Wang
Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117 P.R. China
Search for more papers by this authorHe Dong
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072 P.R. China
Search for more papers by this authorKui Xu
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorZhengyi Sun
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorYingdong Xia
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
Search for more papers by this authorZhongan Li
Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorXingyu Gao
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 P.R. China
Search for more papers by this authorCorresponding Author
Lingfeng Chao
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yonghua Chen
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Inverted perovskite solar cells with self-assembled monolayers (SAMs) have attracted extensive attention due to their high efficiency and long-term operational stability. However, the hole extraction at the SAMs/perovskite interface is generally less efficient with respect to the electron extraction. Here, we report the construction of a universal p-type heterointerface between SAMs and perovskite with heterocyclic dipolar compounds imidazole hydroiodide (ImHI). We found that the strong interaction by hydrogen bonds together with formative dipole layer were observed between ImHI and perovskite. This allows more p-type contacts with relatively small energy barriers at SAMs/perovskite heterointerfaces by downshifting the Fermi level, reducing the energy mismatch and facilitating the hole extraction. The p-type contact enhancement was further confirmed by a series of SAMs at the perovskite buried interface. As a result, a best-performing solar cell with a power conversion efficiency of 26.05% was achieved, with maintaining 96% of the initial efficiency for 2000 h under nitrogen-filled glove box, 94% of the initial efficiency for 800 h at 55 °C/55% RH, and 86% of the initial efficiency for 1000 h under continuous light stress at maximum power point.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202507950-sup-0001-SuppMat.docx173.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. Xu, T. Liu, K.e Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R. H. Friend, Q. Gong, H. J. Snaith, R. Zhu, Science 2018, 360, 1442–1446.
- 2J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y.-K.i Kim, C. S.u Moon, N. J. Jeon, J.-P. Correa-Baena, V. Bulović, S. S. Shin, M. G. Bawendi, J. Seo, Nature 2021, 590, 587–593.
- 3S. Tan, T. Huang, I. Yavuz, R. Wang, T. W. Yoon, M. Xu, Q. Xing, K. Park, D.-K. Lee, C.-H. Chen, R. Zheng, T. Yoon, Y. Zhao, H.-C. Wang, D. Meng, J. Xue, Y. J. Song, X. Pan, N.-G. Park, J.-W. Lee, Y. Yang, Nature 2022, 605, 268–273.
- 4Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che, G. Chen, H. Gao, D. He, G. Ma, J. Wang, J. Xiu, H. Yi, T. Chen, Z. He, Nature 2023, 620, 545–551.
- 5S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun, Y. Zhang, X. Lei, S. Hu, M. Kober-Czerny, J. Wang, F. Ren, Q. Zhou, H. Raza, Y. Gao, Y. Ji, S. Li, H. Li, L. Qiu, W. Huang, Y. Zhao, B. Xu, Z. Liu, H. J. Snaith, N.-G. Park, W. Chen, Nature 2024, 632, 536–542.
- 6H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou, Y. Yang, Q. Zhou, A. S. R. Bati, H. Wan, Z. Wang, L. Zeng, J. Wang, P. Serles, Y. Liu, S. Teale, Y. Liu, M. I. Saidaminov, M. Li, N. Rolston, S. Hoogland, T. Filleter, M. G. Kanatzidis, B. Chen, Z. Ning, E. H. Sargent, Science 2024, 384, 189–193.
- 7N. Yan, Z. Fang, Z. Dai, J. Feng, S. Liu, Adv. Funct. Mater. 2024, 34, 2314039.
- 8M. Stolterfoht, C. M. Wolff, J. A. Márquez, S. Zhang, C. J. Hages, D. Rothhardt, S. Albrecht, P. L. Burn, P. Meredith, T. Unold, D. Neher, Nat. Energy 2018, 3, 847–854.
- 9X. Luo, X. Liu, X. Lin, T. Wu, Y. Wang, Q. Han, Y. Wu, H. Segawa, L. Han, ACS Energy Lett. 2024, 9, 1487–1506.
- 10M. Li, M. Liu, F. Qi, F. R. Lin, A. K.-Y. Jen, Chem. Rev. 2024, 124, 2138–2204.
- 11Q. Jiang, K. Zhu, Nat. Rev. Mater. 2024, 9, 399–419.
- 12W. Jiang, F. Li, M. Li, F. Qi, F. R. Lin, A. K.-Y. Jen, Angew. Chem. Int. Ed 2022, 61, e202213560.
- 13X. Deng, F. Qi, F. Li, S. Wu, F. R. Lin, Z. Zhang, Z. Guan, Z. Yang, C.-S. Lee, A. K.-Y. Jen, Angew. Chem. Int. Ed 2022, 61, e202203088.
- 14X. Zheng, Z. Li, Y. Zhang, M. Chen, T. Liu, C. Xiao, D. Gao, J. B. Patel, D. Kuciauskas, A. Magomedov, R. A. Scheidt, X. Wang, S. P. Harvey, Z. Dai, C. Zhang, D. Morales, H. Pruett, B. M. Wieliczka, A. R. Kirmani, N. P. Padture, K. R. Graham, Y. Yan, M. K. Nazeeruddin, M. D. McGehee, Z. Zhu, J. M. Luther, Nat. Energy 2023, 8, 462–472.
- 15A. Magomedov, A. Al-Ashouri, E. Kasparavičius, S. Strazdaite, G. Niaura, M. Jošt, T. Malinauskas, S. Albrecht, V. Getautis, Adv. Energy Mater. 2018, 8, 1801892.
- 16S. Wang, D. Khan, W. Zhou, Y. Sui, T. Zhang, G. Yu, Y. Huang, X. Yang, X. Chen, H. Yan, J. Tang, F. Yang, P. Han, Z. Zheng, Y. Zhang, Z. Tang, Adv. Funct. Mater. 2024, 34, 2316202.
- 17T. Xiao, M. Hao, T. Duan, Y. Li, Y. Zhang, P. Guo, Y. Zhou, Nat. Energy 2024, 9, 999–1010.
- 18S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang, L. Zhan, X. Jiang, Y. Li, X. Ji, S. Liu, M. Yu, F. Yu, Y. Zhang, R. Wu, Z. Liu, Z. Ning, D. Neher, L. Han, Y. Lin, H. Tian, W. Chen, M. Stolterfoht, L. Zhang, W.-H. Zhu, Y. Wu, Science 2023, 380, 404–409.
- 19S. Yu, Z. Xiong, H. Zhou, Q. Zhang, Z. Wang, F. Ma, Z. Qu, Y. Zhao, X. Chu, X. Zhang, J. You, Science 2023, 382, 1399–1404.
- 20X. Jiang, X. Wang, X. Wu, S. Zhang, B. Liu, D. Zhang, B. Li, P. Xiao, F. Xu, H. Lu, T. Chen, A. K.-Y. Jen, S. Yang, Z. Zhu, Adv. Energy Mater. 2023, 13, 2300700.
- 21Z. Li, X. Sun, X. Zheng, B. Li, D. Gao, S. Zhang, X. Wu, S. Li, J. Gong, J. M. Luther, Z. Li, Z. Zhu, Science 2023, 382, 284–289.
- 22H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang, Q. Han, L. Han, Science 2024, 383, 1236–1240.
- 23Y. Yang, R. Chen, J. Wu, Z. Dai, C. Luo, Z. Fang, S. Wan, L. Chao, Z. Liu, H. Wang, Angew. Chem. Int. Ed 2024, 63, e202409689.
- 24X. Li, W. Zhang, X. Guo, C. Lu, J. Wei, J. Fang, Science 2022, 375, 434–437.
- 25R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A. S. Subbiah, J. Liu, G. T. Harrison, M. I. Nugraha, M. K. Eswaran, M. Babics, Y. Chen, F. Xu, T. G. Allen, A. U.r Rehman, C.-L. Wang, T. D. Anthopoulos, U. Schwingenschlögl, M. De Bastiani, E. Aydin, S. De Wolf, Science 2022, 376, 73–77.
- 26W. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu, T. Li, S. Yuan, Z. Xu, X. Feng, J. Xu, M. D. McGehee, J. Xu, Science 2023, 379, 683–690.
- 27S. Mariotti, E. Köhnen, F. Scheler, K. Sveinbjörnsson, L. Zimmermann, M. Piot, F. Yang, B. Li, J. Warby, A. Musiienko, D. Menzel, F. Lang, S. Keßler, I. Levine, D. Mantione, A. Al-Ashouri, M. S. Härtel, K. Xu, A. Cruz, J. Kurpiers, P. Wagner, H. Köbler, J. Li, A. Magomedov, D. Mecerreyes, E. Unger, A. Abate, M. Stolterfoht, B. Stannowski, R. Schlatmann, et al., Science 2023, 381, 63–69.
- 28J. Xu, C. C. Boyd, Z. J. Yu, A. F. Palmstrom, D. J. Witter, B. W. Larson, R. M. France, J. Werner, S. P. Harvey, E. J. Wolf, W. Weigand, S. Manzoor, M. F. A. M. van Hest, J. J. Berry, J. M. Luther, Z. C. Holman, M. D. McGehee, Science 2020, 367, 1097–1104.
- 29T. Li, J. Xu, R. Lin, S. Teale, H. Li, Z. Liu, C. Duan, Q. Zhao, K. Xiao, P. Wu, B. Chen, S. Jiang, S. Xiong, H. Luo, S. Wan, L. Li, Q. Bao, Y. Tian, X. Gao, J. Xie, E. H. Sargent, H. Tan, Nat. Energy 2023, 8, 610–620.
- 30M. Cai, N. Ishida, X. Li, X. Yang, T. Noda, Y. Wu, F. Xie, H. Naito, D. Fujita, L. Han, Joule 2018, 2, 296–306.
- 31V. W. Bergmann, Y. Guo, H. Tanaka, I. M. Hermes, D. Li, A. Klasen, S. A. Bretschneider, E. Nakamura, R. Berger, S. A. L. Weber, ACS Appl. Mater. Interfaces 2016, 8, 19402–19409.
- 32Z. Ma, L. Chen, Z. Liu, Y. Wang, K. Zhu, Y. Su, Corros. Sci. 2023, 213, 110973.
- 33C. Stecker, K. Liu, J. Hieulle, R. Ohmann, Z. Liu, L. K. Ono, G. Wang, Y. Qi, ACS Nano 2019, 13, 12127–12136.
- 34Q. Jiang, J. Tong, Y. Xian, R. A. Kerner, S. P. Dunfield, C. Xiao, R. A. Scheidt, D. Kuciauskas, X. Wang, M. P. Hautzinger, R. Tirawat, M. C. Beard, D. P. Fenning, J. J. Berry, B. W. Larson, Y. Yan, K. Zhu, Nature 2022, 611, 278–283.
- 35T. Niu, L. Chao, Y. Xia, K. Wang, X. Ran, X. Huang, C. Chen, J. Wang, D. Li, Z. Su, Z. Hu, X. Gao, J. Zhang, Y. Chen, Adv. Mater. 2024, 36, 2309171.
- 36C. Jiang, T. Qin, L. Tan, H. Li, J. Zhou, M. Li, Z.-M. Dang, L. Ding, Q. Xiong, C. Yi, Adv. Energy Mater. 2024, 14, 2304093.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.