Intermediate Layer-Engineered Lanthanide Nanoparticles Enable Deep Bioorthogonal Liver Tumor and Vascular Imaging via Switchable NIR-II Emissions
Kehong Lv
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
Search for more papers by this authorHongxia Yue
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
Search for more papers by this authorChunyan Li
CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P.R. China
Search for more papers by this authorShengzhe Chen
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
Search for more papers by this authorHongli Wang
College of Animal Science, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorRuohao Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
Search for more papers by this authorCorresponding Author
Jing Feng
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Hongjie Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorKehong Lv
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
Search for more papers by this authorHongxia Yue
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
Search for more papers by this authorChunyan Li
CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 P.R. China
Search for more papers by this authorShengzhe Chen
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
Search for more papers by this authorHongli Wang
College of Animal Science, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorRuohao Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
Search for more papers by this authorCorresponding Author
Jing Feng
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Hongjie Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P.R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 P.R. China
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
The second near-infrared window (NIR-II) has become an attractive optical region for fluorescence imaging. However, due to the complexity in vivo, NIR-II light with various wavelengths for different imaging scenes has not been investigated. Here, we found that 1525 nm light is suitable for high-resolution fluorescence imaging due to low background interference, while its attenuation in vivo makes it unsuitable for deep imaging. The 1064 nm light is suitable for deep imaging. The impact of Yb3+ ions and the proportion of the intermediate layer in lanthanide nanoparticles on the modulation of emissions were investigated. The intense 1064 nm emission is achievable when the Yb3+ content is 80% and the intermediate layer proportion is 0.1. The bioorthogonal orthotopic liver tumor imaging could be achieved by modifying the lanthanide nanoparticles with DBCO-PEG2000-DSPE and establishing artificial receptors by N-azidoacetylmannosamine-tetraacylated (Ac4ManNAz). Lanthanide nanoparticles with the intermediate layer proportion of 0.66 and 80% Yb3+ facilitate intense 1525 nm emission, enabling the vascular imaging. Based on the imaging characteristics of NIR-II emissions with different wavelengths in vivo, this work achieves high-resolution imaging and deep imaging through intermediate layer regulation of lanthanide nanoparticles, providing an opportunity to explore a new generation of high-performance fluorescent probes.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author.
Supporting Information
Filename | Description |
---|---|
ange202507787-sup-0001-SuppMat.docx70.4 MB | Supporting Information |
ange202507787-sup-0002-SuppMat.mp41.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Liu, M. Chen, Y. Sun, G. Chen, T. Yang, Y. Gao, X. Zhang, F. Li, Biomaterials, 2011, 32, 8243–8253.
- 2Y.I. Park, K.T. Lee, Y.D. Suh, T. Hyeon, Chem. Soc. Rev. 2015, 44, 1302–1317.
- 3A.A. Ansari, A.K. Parchur, N.D. Thorat, G. Chen, Coord. Chem. Rev. 2021, 440, 213971.
- 4A.N. Generalova, B.N. Chichkov, E.V. Khaydukov, Adv. Colloid Interface Sci. 2017, 245, 1–19.
- 5I.C. Sun, D.K. Eun, H. Koo, C.Y. Ko, H.S. Kim, D.K. Yi, K. Choi, I.C. Kwon, K. Kim, C.H. Ahn, Angew. Chem. Int. Ed. 2011, 50, 9348–9351.
- 6X. Yu, X. Liu, W. Wu, K. Yang, R. Mao, F. Ahmad, X. Chen, W. Li, Angew. Chem. Int. Ed. 2019, 58, 2017–2022.
- 7W. Shang, C. Zeng, Y. Du, H. Hui, X. Liang, C. Chi, K. Wang, Z. Wang, J. Tian, Adv. Mater. 2017, 29, 1604381.
- 8P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, X. Chen, Angew. Chem. Int. Ed. 2014, 53, 1252–1257.
- 9Z.H. Chen, X. Wang, M. Yang, J. Ming, B. Yun, L. Zhang, X. Wang, P. Yu, J. Xu, H. Zhang, F. Zhang, Angew. Chem. Int. Ed. 2023, 62. e202311883.
- 10F. Wang, L. Qu, F. Ren, A. Baghdasaryan, Y. Jiang, R. Hsu, P. Liang, J. Li, G. Zhu, Z. Ma, H. Dai, Proc. Natl. Acad. Sci. USA 2022, 119, e2123111119.
- 11Y. Jiang, J. Li, X. Zhen, C. Xie, K. Pu, Adv. Mater. 2018, 30, 1705980.
- 12Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W.H. Liew, K. Yao, J. Jiang, C. Liu, H. Zheng, B. Liu, Adv. Mater. 2018, 30, 1800766.
- 13M. Ding, S. Cui, L. Fang, Z. Lin, C. Lu, X. Yang, Angew. Chem. Int. Ed. 2022, 61, e202203631.
- 14F. Cao, J. Chen, D. Yu, S. Wang, X. Xu, J. Liu, Z. Han, B. Huang, Y. Gu, K.L. Choy, H. Zeng, Adv. Mater. 2020, 32, 1905362.
- 15C. Zhou, L. Zhang, T. Sun, Y. Zhang, Y. Liu, M. Gong, Z. Xu, M. Du, Y. Liu, G. Liu, D. Zhang, Adv. Mater. 2021, 33, 2006532.
- 16T. He, C. Jiang, J. He, Y. Zhang, G. He, J. Wu, J. Lin, X. Zhou, P. Huang, Adv. Mater. 2021, 33, 2008540.
- 17Z. Luo, D. Hu, D. Gao, Z. Yi, H. Zheng, Z. Sheng, X. Liu, Adv. Mater. 2021, 33, 2102950.
- 18H. Yang, H. Huang, X. Ma, Y. Zhang, X. Yang, M. Yu, Z. Sun, C. Li, F. Wu, Q. Wang, Adv. Mater. 2021, 33, 2103953.
- 19F. Zhao, X. Zhang, F. Bai, S. Lei, G. He, P. Huang, J. Lin, Adv. Mater. 2023, 35, 2208097.
- 20L. He, L.H. He, S. Xu, T.B. Ren, X.X. Zhang, Z.J. Qin, X.B. Zhang, L. Yuan, Angew. Chem. Int. Ed. 2022, 61, e202211409.
- 21Y. Wang, W. Chen, Z. Wang, Y. Zhu, H. Zhao, K. Wu, J. Wu, W. Zhang, Q. Zhang, H. Guo, H. Ju, Y. Liu, Angew. Chem. Int. Ed. 2023, 62, e202212866.
- 22M. Zhao, H. Zhuang, H. Zhang, B. Li, J. Ming, X. Chen, M. Chen, Angew. Chem. Int. Ed. 2022, 61, e202209592.
- 23S. Tian, H. Bai, S. Li, Y. Xiao, X. Cui, X. Li, J. Tan, Z. Huang, D. Shen, W. Liu, P. Wang, B.Z. Tang, C.-S. Lee, Angew. Chem. Int. Ed. 2021, 60, 11758–11762.
- 24X. Zhong, A. Patel, Y. Sun, A.M. Saeboe, A.M. Dennis, Angew. Chem. Int. Ed. 2024, 64, e202410936.
- 25Y. Fan, F. Zhang, Adv. Opt. Mater. 2019, 7, 1801417.
- 26A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, J. Phys. D: Appl. Phys. 2005, 38, 2543.
- 27A.M. Smith, M.C. Mancini, S. Nie, Nat. Nanotechnol. 2009, 4, 710–711.
- 28S. Diao, G. Hong, A.L. Antaris, J.L. Blackburn, K. Cheng, Z. Cheng, H. Dai, Nano Res. 2015, 8, 3027–3034.
- 29Y. Zhong, Z. Ma, S. Zhu, J. Yue, M. Zhang, A.L. Antaris, J. Yuan, R. Cui, H. Wan, Y. Zhou, W. Wang, N.F. Huang, J. Luo, Z. Hu,H. Dai, Nat. Commun. 2017, 8, 737.
- 30K. Zhang, F.R. Chen, L. Wang, J. Hu, Small, 2023, 19, 2206044.
- 31K.H. Lv, L. Yao, X.Y. Fu, X. Gao, H.L. Wang, Y.F. Zhou, R.H. Zhang, Y. Lu, J. Feng, H.J. Zhang, Nano Today, 2023, 52, 101964.
- 32W. Mao, J. Tang, L. Dai, X. He, J. Li, L. Cai, P. Liao, R. Jiang, J. Zhou, H. Wu, Angew. Chem. Int. Ed. 2021, 60, 2393–2397.
- 33M.R. Karver, R. Weissleder, S.A. Hilderbrand, Angew. Chem. Int. Ed. 2012, 51, 920–922.
- 34D. Ye, A.J. Shuhendler, L. Cui, L. Tong, S.S. Tee, G. Tikhomirov, D.W. Felsher, J. Rao, Nat. Chem. 2014, 6, 519–526.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.