Blocky Selective Postpolymerization C–H Functionalization of Polyolefins
Eliza K. Neidhart
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
Search for more papers by this authorMichelle E. Pomatto
Macromolecules Innovation Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24061 USA
Search for more papers by this authorChris Vasallo
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
Search for more papers by this authorErin R. Crater
Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24061 USA
Search for more papers by this authorJill W. Alty
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
Search for more papers by this authorPolyxeni P. Angelopoulou
Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee, 37830 USA
Search for more papers by this authorErik J. Alexanian
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
Search for more papers by this authorCorresponding Author
Logan T. Kearney
Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee, 37830 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Robert B. Moore
Macromolecules Innovation Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24061 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Frank A. Leibfarth
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorEliza K. Neidhart
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
Search for more papers by this authorMichelle E. Pomatto
Macromolecules Innovation Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24061 USA
Search for more papers by this authorChris Vasallo
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
Search for more papers by this authorErin R. Crater
Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24061 USA
Search for more papers by this authorJill W. Alty
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
Search for more papers by this authorPolyxeni P. Angelopoulou
Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee, 37830 USA
Search for more papers by this authorErik J. Alexanian
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
Search for more papers by this authorCorresponding Author
Logan T. Kearney
Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee, 37830 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Robert B. Moore
Macromolecules Innovation Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24061 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Frank A. Leibfarth
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
C–H functionalization of commodity polyolefins affords functional materials derived from a high-volume, low-cost resource. However, current postpolymerization modification strategies result in randomly distributed functionalization along the length of the polymer backbone, which has a negative impact on the crystallinity of the resultant polymers, and thus the thermomechanical properties. Here, we demonstrate an amidyl radical mediated C–H functionalization of polyolefins to access blocky microstructures, which exhibit a higher crystalline fraction, larger crystallite size, and improved mechanical properties compared to their randomly functionalized analogues. Taking inspiration from the site-selective C–H functionalization of small molecules, we leverage the steric protection provided by crystallites and target polymer functionalization to amorphous domains in a semicrystalline polyolefin gel. The beneficial outcomes of blocky functionalization are independent of the identity of the pendant functional group that is installed through functionalization. The decoupling of functional group incorporation and crystallinity highlights the promise in accessing nonrandom microstructures through selective functionalization to circumvent traditional tradeoffs in postpolymerization modification, with potential impact in advanced materials and upcycling plastic waste.
Conflict of Interests
E.J.A., J.W.A., and F.A.L. are inventors on a US patent application that protects the composition of the O-alkenylhydroxamate reagent and its use for polymer functionalization.
Open Research
Data Availability Statement
The data that support the findings of this study are available in Supporting Information of this article
Supporting Information
Filename | Description |
---|---|
ange202507687-sup-0001-SuppMat.pdf3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. A. Gauthier, M. I. Gibson, H. Klok, Angew. Chem. Int. Ed. 2009, 48, 48–58.
- 2J. B. Williamson, S. E. Lewis, R. R. Johnson, I. M. Manning, F. A. Leibfarth, Angew. Chem. Int. Ed. 2019, 58, 8654–8668.
- 3R. A. J. Ditzler, A. J. King, S. E. Towell, M. Ratushnyy, A. V. Zhukhovitskiy, Nat. Rev. Chem. 2023, 7, 600–615.
- 4K. S. Whiteley, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2011.
- 5R. Geyer, J. R. Jambeck, K. L. Law, Sci. Adv. 2017, 3, e1700782.
- 6M. Xanthos, Science 2012, 337, 700–702.
- 7P. Britt, J. Garcia, A. Goldman, J. Guzman, J. Hartwig, J. Martin, D. Chemical, M. Mccann, R. Waymouth, Report of the Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers 2019, https://doi.org/10.2172/1616517.
10.2172/1616517 Google Scholar
- 8N. K. Boaen, M. A. Hillmyer, Chem. Soc. Rev. 2005, 34, 267.
- 9M. Aglietto, R. Bertani, G. Ruggeri, P. Fiordiponti, A. L. Segre, Macromolecules 1989, 22, 1492–1493.
- 10J. B. Williamson, W. L. Czaplyski, E. J. Alexanian, F. A. Leibfarth, Angew. Chem. Int. Ed. 2018, 57, 6261–6265.
- 11Y. Kondo, D. García-Cuadrado, J. F. Hartwig, N. K. Boaen, N. L. Wagner, M. A. Hillmyer, J. Am. Chem. Soc. 2002, 124, 1164–1165.
- 12X. Liu, Z. Hu, B. S. Portela, E. M. Rettner, A. Pineda, J. Miscall, N. A. Rorrer, A. T. Krummel, R. S. Paton, G. M. Miyake, Angew. Chem. Int. Ed. 2025, 64, e202418411.
- 13T. J. Fazekas, J. W. Alty, E. K. Neidhart, A. S. Miller, F. A. Leibfarth, E. J. Alexanian, Science 2022, 375, 545–550.
- 14P. E. Gloor, Y. Tang, A. E. Kostanska, A. E. Hamielect, Polymer 1994, 35, 1012–1030.
- 15H. Zhou, S. Wang, H. Huang, Z. Li, C. M. Plummer, S. Wang, W.-H. Sun, Y. Chen, Macromolecules 2017, 50, 3510–3515.
- 16L. Chen, K. G. Malollari, A. Uliana, D. Sanchez, P. B. Messersmith, J. F. Hartwig, Chem 2021, 7, 137–145.
- 17A. Bunescu, S. Lee, Q. Li, J. F. Hartwig, ACS Cent. Sci. 2017, 3, 895–903.
- 18C. Bae, J. F. Hartwig, H. Chung, N. K. Harris, K. A. Switek, M. A. Hillmyer, Angew. Chem. Int. Ed. 2005, 44, 6410–6413.
- 19M. L. Lepage, S. F. Musolino, J. E. Wulff, Acc. Chem. Res. 2024, 57, 3327–3342.
- 20E. Ben Ayed, J. Delcorps, O. Coulembier, Ind. Eng. Chem. Res. 2024, 63, 21455–21465.
- 21G. Huang, Z. Wang, B. Xu, X. Du, J. Tan, C. Feng, Eur. Polym. J. 2025, 228, 113834.
- 22A. E. Ringuette, G. Aktas Eken, A. B. Garnenez, A. I. Palmieri, C. K. Ober, G. W. Coates, B. P. Fors, J. Am. Chem. Soc. 2024, 146, 20563–20568.
- 23C. M. Plummer, H. Zhou, W. Zhu, H. Huang, L. Liu, Y. Chen, Polym. Chem. 2018, 9, 1309–1317.
- 24M. L. Lepage, C. Simhadri, C. Liu, M. Takaffoli, L. Bi, B. Crawford, A. S. Milani, J. E. Wulff, Science 2019, 366, 875–878.
- 25G. M. Rodriguez, M. M. Díaz-Requejo, P. J. Pérez, Macromolecules 2021, 54, 4971–4985.
- 26J. Sun, J. Dong, L. Gao, Y.-Q. Zhao, H. Moon, S. L. Scott, Chem. Rev. 2024, 124, 9457–9579.
- 27Y. Zhao, E. M. Rettner, M. E. Battson, Z. Hu, J. Miscall, N. A. Rorrer, G. M. Miyake, Angew. Chem. Int. Ed. 2025, 64, e202415707.
- 28M. N. Hodges, M. J. Elardo, J. Seo, A. F. Dohoda, F. E. Michael, M. R. Golder, Angew. Chem. Int. Ed. 2023, 62, e202303115.
- 29M. E. Skala, S. M. Zeitler, M. R. Golder, Chem. Sci. 2024, 15, 10900–10907.
- 30S. E. Towell, M. Ratushnyy, L. S. Cooke, G. M. Lewis, A. V. Zhukhovitskiy, Nature 2025, 640, 384–389.
- 31S. Humbert, O. Lame, R. Séguéla, G. Vigier, Polymer 2011, 52, 4899–4909.
- 32E. B. Trigg, M. J. Stevens, K. I. Winey, J. Am. Chem. Soc. 2017, 139, 3747–3755.
- 33T. W. Baughman, C. D. Chan, K. I. Winey, K. B. Wagener, Macromolecules 2007, 40, 6564–6571.
- 34P. J. Sarver, N. B. Bissonnette, D. W. C. Macmillan, J. Am. Chem. Soc. 2021, 143, 9737–9743.
- 35S. J. Chen, D. L. Golden, S. W. Krska, S. S. Stahl, J. Am. Chem. Soc. 2021, 143, 14438–14444.
- 36M. C. White, J. Zhao, J. Am. Chem. Soc. 2018, 140, 13988–14009.
- 37A. M. Carestia, D. Ravelli, E. J. Alexanian, Chem. Sci. 2018, 9, 5360–5365.
- 38Z. Lu, J. Putziger, S. Lin, Nat. Chem. 2025, 17, 365–372.
- 39T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147–1169.
- 40Ł. Woźniak, J.-F. Tan, Q.-H. Nguyen, A. Madron du Vigné, V. Smal, Y.-X. Cao, N. Cramer, Chem. Rev. 2020, 120, 10516–10543.
- 41N. Holmberg-Douglas, D. A. Nicewicz, Chem. Rev. 2022, 122, 1925–2016.
- 42Y. He, Z. Huang, K. Wu, J. Ma, Y.-G. Zhou, Z. Yu, Chem. Soc. Rev. 2022, 51, 2759–2852.
- 43G. Li, L. Wan, G. Zhang, D. Leow, J. Spangler, J.-Q. Yu, J. Am. Chem. Soc. 2015, 137, 4391–4397.
- 44P. C. Hiemenz, T. P. Lodge, Polym. Chem. 2007.
10.1201/9781420018271 Google Scholar
- 45K. F. Noble, A. M. Noble, S. J. Talley, R. B. Moore, Polym. Chem. 2018, 9, 5095–5106.
- 46K. F. Noble, D. Troya, S. J. Talley, J. Ilavsky, R. B. Moore, Macromolecules 2020, 53, 9539–9552.
- 47L. J. Anderson, X. Yuan, G. B. Fahs, R. B. Moore, Macromolecules 2018, 51, 6226–6237.
- 48C. R. Kasprzak, L. J. Anderson, R. B. Moore, Polymer 2022, 251, 124918.
- 49G. B. Fahs, S. D. Benson, R. B. Moore, Macromolecules 2017, 50, 2387–2396.
- 50L. J. Anderson, R. B. Moore, Solid State Ion 2019, 336, 47–56.
- 51L. R. Melby, Macromolecules 1978, 11, 50–56.
- 52M. E. Pomatto, R. B. Moore, Polymer 2023, 271, 125810.
- 53M. E. Pomatto, E. R. Crater, G. F. Godshall, R. B. Moore, Polym. Chem. 2024, 15, 609–621.
- 54S. J. Talley, C. L. AndersonSchoepe, C. J. Berger, K. A. Leary, S. A. Snyder, R. B. Moore, Polymer 2017, 126, 437–445.
- 55Y. Zhong, V. Untilova, D. Muller, S. Guchait, C. Kiefer, L. Herrmann, N. Zimmermann, M. Brosset, F. Heiser, M. Brinkmann, Adv. Funct. Mater. 2022, 32, 2202075.
- 56V. Untilova, T. Biskup, L. Biniek, V. Vijayakumar, M. Brinkmann, Macromolecules 2020, 53, 2441–2453.
- 57F. Yang, C. Liu, F. Yang, M. Xiang, T. Wu, Q. Fu, Polymer 2022, 255, 125104.
- 58F. Lv, C. Wan, X. Chen, L. Meng, X. Chen, D. Wang, L. Li, J. Polym. Sci. B Polym. Phys. 2019, 57, 748–757.
- 59X. Shi, Y. Bin, D. Hou, Y. Men, M. Matsuo, Polym. J. 2014, 46, 21–35.
- 60M. M. Tierney, S. Crespi, D. Ravelli, E. J. Alexanian, J.Org. Chem. 2019, 84, 12983–12991.
- 61E. K. Neidhart, M. Hua, Z. Peng, L. T. Kearney, V. Bhat, F. Vashahi, E. J. Alexanian, S. S. Sheiko, C. Wang, B. A. Helms, F. A. Leibfarth, J. Am. Chem. Soc. 2023, 145, 27450–27458.
- 62E. Zhuravlev, V. Madhavi, A. Lustiger, R. Androsch, C. Schick, ACS Macro Lett. 2016, 5, 365–370.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.