Leveraging Sortase A Electrostatics for Powerful Transpeptidation Reactions
Chen Wang
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
Centrale Lille, Lille, F-59000 France
Search for more papers by this authorRémi Desmet
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
Search for more papers by this authorBenoît Snella
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
Search for more papers by this authorDr. Jérôme Vicogne
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
Search for more papers by this authorCorresponding Author
Dr. Oleg Melnyk
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dr. Vangelis Agouridas
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
Centrale Lille, Lille, F-59000 France
E-mail: [email protected]; [email protected]
Search for more papers by this authorChen Wang
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
Centrale Lille, Lille, F-59000 France
Search for more papers by this authorRémi Desmet
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
Search for more papers by this authorBenoît Snella
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
Search for more papers by this authorDr. Jérôme Vicogne
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
Search for more papers by this authorCorresponding Author
Dr. Oleg Melnyk
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dr. Vangelis Agouridas
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000 France
Centrale Lille, Lille, F-59000 France
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Sortase-mediated transpeptidation is a powerful biochemical reaction to perform protein engineering. In this work, we leverage the unique electrostatic profile of sortase A pentamutant (SrtA-5M) to improve SrtA-5M-mediated transpeptidations by incorporating short, charged peptidic modules into the substrates. Importantly, the reaction proceeds with a minimal excess of nucleophile and is fast and highly efficient in the low micromolar substrate concentration range. Electrostatic assistance eliminates the need for additives or complex substrate engineering strategies, thereby giving it a broad scope. Our findings also provide fundamental insights into the influence of substrate charge on SrtA-5M activity, paving the way for further optimization of sortase A-catalyzed transpeptidation reactions.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
ange202507236-sup-0001-SuppMat.docx19.9 MB | Supporting information |
ange202507236-sup-0002-VideoS1.mp414.9 MB | Supporting information |
ange202507236-sup-0003-VideoS2.mp410.3 MB | Supporting information |
ange202507236-sup-0004-VideoS3.mp46.5 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Pihl, Q. Zheng, Y. David, Nat. Rev. Chem. 2023, 7, 234–255.
- 2E. A. Hoyt, P. M. S. D. Cal, B. L. Oliveira, G. J. L. Bernardes, Nat. Rev. Chem. 2019, 3, 147–171.
- 3Y. Zhang, K.-Y. Park, K. F. Suazo, M. D. Distefano, Chem. Soc. Rev. 2018, 47, 9106–9136.
- 4V. Agouridas, O. El Mahdi, O. Melnyk, J. Med. Chem. 2020, 63, 15140–15152.
- 5M. Ritzefeld, Chem.Eur. J. 2014, 20, 8516–8529.
- 6H. E. Morgan, W. B. Turnbull, M. E. Webb, Chem. Soc. Rev. 2022, 51, 4121–4145.
- 7Z. Zou, Y. Ji, U. Schwaneberg, Angew. Chem. Int. Ed. 2024, 63, e202310910.
- 8N. Braga Emidio, R. W. Cheloha, Curr. Opin. Chem. Biol. 2024, 80, 102443.
- 9J. F. Amacher, J. M. Antos, Trends Biochem. Sci. 2024, 49, 596–610.
- 10A. Islam, N. Pishesha, T. J. Harmand, H. Heston, A. W. Woodham, R. W. Cheloha, D. Bousbaine, M. Rashidian, H. L. Ploegh, J. Immun. 2021, 207, 1468–1477.
- 11M. W. Popp, J. M. Antos, G. M. Grotenbreg, E. Spooner, H. L. Ploegh, Nat. Chem. Biol. 2007, 3, 707–708.
- 12Q. Yang, Y. Gao, X. Liu, Y. Xiao, M. Wu, Angew. Chem. Int. Ed. 2022, 61, e202209945.
- 13N. Braga Emidio, R. W. Cheloha, Protein Sci. 2024, 33, e4866.
- 14M. Fottner, A.-D. Brunner, V. Bittl, D. Horn-Ghetko, A. Jussupow, V. R. I. Kaila, A. Bremm, K. Lang, Nat. Chem. Biol. 2019, 15, 276–284.
- 15M. Fottner, M. Weyh, S. Gaussmann, D. Schwarz, M. Sattler, K. Lang, Nat. Commun. 2021, 12, 6515.
- 16W. van ’t Hof, S. Hansenová Maňásková, E. C. Veerman, J. G. Bolscher, Biol. Chem. 2015, 396, 283–293.
- 17Y. Zhou, T. Durek, D. J. Craik, F. B. H. Rehm, Angew. Chem. Int. Ed. 2024, 63, e202316777.
- 18A. Sinisi, M. W.-L. Popp, J. M. Antos, W. Pansegrau, S. Savino, M. Nissum, R. Rappuoli, H. L. Ploegh, L. Buti, Bioconjugate Chem. 2012, 23, 1119–1126.
- 19Y. Ge, L. Chen, S. Liu, J. Zhao, H. Zhang, P. R. Chen, J. Am. Chem. Soc. 2019, 141, 1833–1837.
- 20I. Chen, B. M. Dorr, D. R. Liu, Proc. Natl. Acad. Sci. USA 2011, 108, 11399–11404.
- 21S. Pritz, Y. Wolf, O. Kraetke, J. Klose, M. Bienert, M. Beyermann, J. Org. Chem. 2007, 72, 3909–3912.
- 22L. Freiburger, M. Sonntag, J. Hennig, J. Li, P. Zou, M. Sattler, J. Biomol. NMR 2015, 63, 1–8.
- 23Y. Yamamura, H. Hirakawa, S. Yamaguchi, T. Nagamune, Chem. Commun. 2011, 47, 4742.
- 24R. David Row, T. J. Roark, M. C. Philip, L. L. Perkins, J. M. Antos, Chem. Commun. 2015, 51, 12548–12551.
- 25Z. L. P. Arnott, H. E. Morgan, K. Hollingsworth, C. M. E. Stevenson, L. J. Collins, A. Tamasanu, D. C. Machin, J. P. Dolan, T. P. Kamiński, G. C. Wildsmith, D. J. Williamson, I. B. Pickles, S. L. Warriner, W. B. Turnbull, M. E. Webb, Angew. Chem. Int. Ed. 2024, 63, e202310862.
- 26Y. Xiao, M. Wu, Chem. - Eur. J. 2024, 30, e202401961.
- 27D. J. Williamson, M. A. Fascione, M. E. Webb, W. B. Turnbull, Angew. Chem. Int. Ed. 2012, 51, 9377–9380.
- 28F. Liu, E. Y. Luo, D. B. Flora, A. R. Mezo, J. Org. Chem. 2014, 79, 487–492.
- 29H. E. Morgan, Z. L. P. Arnott, T. P. Kamiński, W. B. Turnbull, M. E. Webb, Bioconjugate Chem. 2022, 33, 2341–2347.
- 30C. Zuo, R. Ding, X. Wu, Y. Wang, G.-C. Chu, L.-J. Liang, H. Ai, Z.-B. Tong, J. Mao, Q. Zheng, T. Wang, Z. Li, L. Liu, D. Sun, Angew. Chem. Int. Ed. 2022, 61, e202201887.
- 31E. Jurrus, D. Engel, K. Star, K. Monson, J. Brandi, L. E. Felberg, D. H. Brookes, L. Wilson, J. Chen, K. Liles, M. Chun, P. Li, D. W. Gohara, T. Dolinsky, R. Konecny, D. R. Koes, J. E. Nielsen, T. Head-Gordon, W. Geng, R. Krasny, G.-W. Wei, M. J. Holst, J. A. McCammon, N. A. Baker, Protein Sci. 2018, 27, 112–128.
- 32G. Schreiber, G. Haran, H. X. Zhou, Chem. Rev. 2009, 109, 839–860.
- 33J. N. Pedersen, Y. Zhou, Z. Guo, B. Pérez, Biotechnol. Bioeng. 2019, 116, 1795–1812.
- 34A. J. Russell, A. R. Fersht, Nature 1987, 328, 496–500.
- 35E. Stellwagen, J. D. Prantner, N. C. Stellwagen, Anal. Biochem. 2008, 373, 407–409.
- 36M. W.-L. Popp, H. L. Ploegh, Angew. Chem. Int. Ed. 2011, 50, 5024–5032.
- 37J. Watly, E. Simonovsky, R. Wieczorek, N. Barbosa, Y. Miller, H. Kozlowski, Inorg. Chem. 2014, 53, 6675–6683.
- 38S. M. Fuchs, R. T. Raines, Protein Sci. 2005, 14, 1538–1544.
- 39V. Paraskevopoulou, F. H. Falcone, Microorganisms 2018, 6, 47.
- 40N. Ollivier, M. Sénéchal, R. Desmet, B. Snella, V. Agouridas, O. Melnyk, Nat. Commun. 2022, 13, 6667.
- 41N. Ollivier, E. Roy, R. Desmet, V. Agouridas, V. Diemer, O. Melnyk, Org. Lett. 2023, 25, 2696–2700.
- 42Y. Zong, T. W. Bice, H. Ton-That, O. Schneewind, S. V. L. Narayana, J. Biol. Chem. 2004, 279, 31383–31389.
- 43M. L. Bentley, E. C. Lamb, D. G. McCafferty, J. Biol. Chem. 2008, 283, 14762–14771.
- 44N. Suree, C. K. Liew, V. A. Villareal, W. Thieu, E. A. Fadeev, J. J. Clemens, M. E. Jung, R. T. Clubb, J. Biol. Chem. 2009, 284, 24465–24477.
- 45J.-S. Zheng, S. Tang, Y.-K. Qi, Z.-P. Wang, L. Liu, Nat. Protoc. 2013, 8, 2483–2495.
- 46F. Terzani, C. Wang, S. Rostami, R. Desmet, B. Snella, M. Sénéchal, B. Wiltschi, J. Vicogne, O. Melnyk, V. Agouridas, STAR Protocols 2024, 5, 103390.
- 47R. Desmet, C. Boidin-Wichlacz, R. Mhidia, A. Tasiemski, V. Agouridas, O. Melnyk, Angew. Chem. Int. Ed. 2023, 62, e202302648.
- 48B. Snella, B. Grain, J. Vicogne, F. Capet, B. Wiltschi, O. Melnyk, V. Agouridas, Angew. Chem. Int. Ed. 2022, 61, e202204992.
- 49J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel, O. Ronneberger, L. Willmore, A. J. Ballard, J. Bambrick, S. W. Bodenstein, D. A. Evans, C.-C. Hung, M. O'Neill, D. Reiman, K. Tunyasuvunakool, Z. Wu, A. Žemgulytė, E. Arvaniti, C. Beattie, O. Bertolli, A. Bridgland, A. Cherepanov, M. Congreve, A. I. Cowen-Rivers, A. Cowie, M. Figurnov, F. B. Fuchs, H. Gladman, R. Jain, et al., Nature 2024, 630, 493–500.
- 50E. F. Pettersen, T. D. Goddard, C. C. Huang, E. C. Meng, G. S. Couch, T. I. Croll, J. H. Morris, T. E. Ferrin, Protein Sci. 2021, 30, 70–82.
- 51J. Rey, S. Murail, S. de Vries, P. Derreumaux, P. Tuffery, Nucleic Acids Res. 2023, 51, W432–W437.
- 52D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, J. Comput. Chem. 2005, 26, 1701–1718.
- 53M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 2015, 1–2, 19–25.
10.1016/j.softx.2015.06.001 Google Scholar
- 54J. Huang, A. D. MacKerell Jr, J. Comput. Chem. 2013, 34, 2135–2145.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.